
A1- Deep Learning
Melih Kandemir

University of Southern Denmark
Department of Mathematics and Computer Science (IMADA)

kandemir@imada.sdu.dk

Fall 2022



Fall 2022
2/25

Perceptron: The atom of intelligence

North-West: Biological neuron
South-East: Artificial neuron (perceptron)



Fall 2022
3/25

The computational graph of a perceptron

Computational graph: block diagram of mathematical
operations.

:dot product :activation



Fall 2022
4/25

Neural net: A group of connected perceptrons

:dot product :activation



Fall 2022
5/25

Neural net: A group of connected perceptrons

:dot product :activation

:params



Fall 2022
6/25

The Multi-Layer Perceptron (MLP)



Fall 2022
7/25

Formal definition of the perceptron
Define the input vector as x = {x1, x2, x3} and the activation
function as v = σ(u). Then, the perceptron i is

fi = wT
i x,

hi = σ(fi),

or in short hand

hi = σ(wT
i x).

:dot product :activation



Fall 2022
8/25

Activation functions



Fall 2022
9/25

Formal definition of the neural net
Define h = [h1, h2] and v = σ(u) = [σ(u1), σ(u2)], then

f = WT
1 x,

h = σ(f),

ŷ = wT
2 h,

or combined

ŷ = wT
2 σ(W

T
1 x).

Here, h is the output of the first (in this case the only) hidden
layer. It is also referred to as the activation map of Layer 1.

:dot product :activation



Fall 2022
10/25

Deep neural nets
▶ We can trivially extend the number of hidden layers.
▶ No agreement on how many layers make a neural net

deep. Just take it as one with many layers, whatever many
means.

▶ Nowadays 100-layer nets are deep, but not very deep.
Formally, a neural net with two hidden layers reads

f1 = WT
1 x,

h1 = σ(f1),

f2 = WT
2 h1,

h2 = σ(f2),

ŷ = wT
3 h2.

How does the computational graph now look like?



Fall 2022
11/25

Learning with neural nets

Remember Mitchell’s definition of learning. Maximize
performance on experience

argmin
W

1

2
(y − ŷ)2︸ ︷︷ ︸
J(W)

.

Here,
▶ Experience: y.
▶ Model: ŷ.
▶ Parameters: W (collection of all weights in the net).
▶ Performance: J .



Fall 2022
12/25

Learn as in linear regression: Find the point with
minimum gradient

∇WJ ≜ 0 cannot be solved (i.e. no closed-form solution).
Instead, start from a random point and take steps towards the
gradient

W(t+1) ←W(t) − α∇WJ.

▶ This technique is called gradient descent.
▶ The step size α is called the learning rate.
▶ Each step (t) is called an iteration.



Fall 2022
13/25

Learning for neural nets

∇WJ = (y − ŷ)∇Wŷ



Fall 2022
14/25

Learning for neural nets

∇WJ = (y − ŷ)∇Wŷ

ŷ is the predicted output of the model for a given input. The
prediction can be computed by passing an input x through all
the layers up to the output. This is called a forward pass.



Fall 2022
15/25

Learning for neural nets

∇WJ = (y − ŷ)∇Wŷ

(y − ŷ) is the prediction error of the model with the current
parameter values.



Fall 2022
16/25

Learning for neural nets

∇WJ = (y − ŷ)∇Wŷ

∇Wŷ is the gradient of the model wrt its parameters. Thanks to
the chain rule, not as hard as it looks.

Chain rule: Given y = f(u) and u = g(x),

∂y

∂x
=

∂y

∂u

∂u

∂x
.

Remember the computational graphs!



Fall 2022
17/25

Chain rule for vector-variate functions
Given y = f(u) and u = g(x) where u and x are M and N
dimensional vectors, respectively,

∂y

∂xi
=

M∑
j=1

∂y

∂uj

∂uj
∂xi

=
∂y

∂u

T ∂u

∂xi
.

Applying this rule to all entries xi of vector x,

∂y

∂x
=

[
∂y

∂x1
, · · · , ∂y

∂xN

]
=

[
∂y

∂u

T ∂u

∂x1
, · · · , ∂y

∂u

T ∂u

∂xN

]

=
∂y

∂u

T
[
∂u

∂x1
, · · · , ∂u

∂xN

]
=

∂y

∂u

T ∂u

∂x
,

where
∂u

∂x
is the Jacobian matrix, which has the derivative

∂ui
∂xj

on its (i, j)th element.



Fall 2022
18/25

Updating Layer 4

f1 = WT
1 x,

h1 = σ(f1),

f2 = WT
2 h1,

h2 = σ(f2),

f3 = WT
3 h2,

h3 = σ(f3),

ŷ= wT
4 h3.⇒ Need to reach here

The gradient wrt w4 reads

∇w4 ŷ = ∇w4w
T
4 h3 = h3.

Note that h3 needs to be stored during the forward pass!



Fall 2022
19/25

Updating Layer 3

f1 = WT
1 x,

h1 = σ(f1),

f2 = WT
2 h1,

h2 = σ(f2),

f3= WT
3 h2,⇒ Need to reach here

h3= σ(f3),

ŷ= wT
4 h3.

The gradient wrt w3
r , weights connecting Layer 2 neuron r to

Layer 3 reads

∇w3
r
ŷ =

∂ŷ

∂h3

T ∂h3

∂f3

∂f3
∂w3

r

.



Fall 2022
20/25

Updating Layer 2

f1 = WT
1 x,

h1 = σ(f1),

f2= WT
2 h1,⇒ Need to reach here

h2= σ(f2),

f3= WT
3 h2,

h3= σ(f3),

ŷ= wT
4 h3.

The gradient wrt w2
r , weights connecting Layer 1 neuron r to

Layer 2 reads

∇w2
r
ŷ =

∂ŷ

∂h3

T ∂h3

∂f3

∂f3
∂h2

∂h2

∂f2

∂f2
∂w2

r

.

Note how the factors in red can be reused from Layer 3!



Fall 2022
21/25

Updating Layer 2

f1 = WT
1 x,

h1 = σ(f1),

f2= WT
2 h1,⇒ Need to reach here

h2= σ(f2),

f3= WT
3 h2,

h3= σ(f3),

ŷ= wT
4 h3.

The gradient wrt w2
r , weights connecting Layer 1 neuron r to

Layer 2 reads

∇w2
r
ŷ =

∂ŷ

∂h3

T ∂h3

∂f3

∂f3
∂h2

∂h2

∂f2

∂f2
∂w2

r

.



Fall 2022
22/25

Updating Layer 1

f1= WT
1 x,⇒ Need to reach here

h1= σ(f1),

f2= WT
2 h1,

h2= σ(f2),

f3= WT
3 h2,

h3= σ(f3),

ŷ= wT
4 h3.

The gradient wrt w1
r , weights connecting input neuron r to

Layer 1 reads

∇w1
r
ŷ =

∂ŷ

∂h3

T ∂h3

∂f3

∂f3
∂h2

∂h2

∂f2

∂f2
∂h1

∂h1

∂f1

∂f1
∂w1

r

.

Note how the factors in red can be reused from Layer 2!



Fall 2022
23/25

Error Backpropagation

Put everything together, learn the parameters of Layer l
following the update rule below:

wl
r
(t+1) ← wl

r
(t) − α (y − ŷ)∇wl

r
ŷ︸ ︷︷ ︸

∇
wl
r
ŷ

.

Looking closer, we basically update weights by rescaling the
prediction error (y − ŷ) by the gradient of the model ŷ wrt them.
Hence, prediction error propagates from the top layer to bottom
at different levels of importance. This is called error
backpropagation.



Fall 2022
24/25

Gradient Backpropagation

▶ The gradient at Layer l + 1 contains a portion of factors
required to calculate the gradient at Layer l.

▶ Then update from top to bottom. Store the reusable factors
of each gradient before moving down. This is called the
backward pass.

Other things than the gradient can backpropagate as well (e.g.
random variables or their moments!).



Fall 2022
25/25

The Backprop Algorithm

Given an input x and a model ŷ with L hidden layers.
▶ Do a forward pass (i.e. compute ŷ(x)). Store activation

maps on the way h1, · · · ,hL.
▶ Do a backward pass (i.e. compute gradients ∇wl

r
ŷ for all r

and l). Store the reusable factors of the gradients on the
way.

▶ Perform the parameter update.


