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Machine learning at large

Definition: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P , if
its performance at tasks in T , as measured in P , improves with
experience E”. [Mitchell, 1997]

Purpose: Designing algorithms to solve T with maximum P and
minimum

time complexity
space complexity
sample complexity
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Supervised learning
T :

Feature vector x ∈ X in feature space X
Label y ∈ Y in label space Y
Concept c : X → Y, c ∈ C where C is a concept class.
Find a hypothesis h ∈ H such that h(x) ≈ c(x),∀x ∈ X for some
hypothesis class H

E :

Sample (data set) S = {(x1, c(x1))), . . . , (xm, c(xm)} for xi
i.i.d.∼ D

independent and identically distributed (i.i.d.) sampled from
unknown data distribution D

P :

Loss (risk) function L : Y × Y → R+

L(y, ŷ) = 1y ̸=ŷ for discrete Y (zero-one loss)
L(y, ŷ) = (y − ŷ)2 for continuous Y (squared error)
where y ∈ Y is observed label and ŷ ∈ Y is a prediction.

M. Kandemir (ICS) 1- Learning Theory Recap Fall 2022 3 / 12



PAC Learnability

Generalization error (risk) is R(h) = Px∼D[h(x) ̸= c(x)]

Empirical error (risk) is R̂S(h) =
1
m

∑m
i=1 1h(xi )̸=c(xi). According to

the law of large numbers E[R̂S(h)] = R(h).
C is PAC-learnable if ∃ an algorithm A returning hS and a
polynomial function poly(·, ·, ·, ·) s.t. ∀ϵ > 0, δ > 0,D, c ∈ C it holds
for any m ≥ poly(1/ϵ, 1/δ, n, size(c)) that

PS∼Dm [R(hS) ≤ ϵ] ≥ 1− δ

where representing x ∈ X costs O(n) and c ∈ C at most size(c).
PAC: Probably Approximately Correct

Probably ⇒ high probability ⇒ δ ≈ 0,
Approximately Correct ⇒ high confidence ⇒ ϵ ≈ 0.
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A learning bound

Let A return a consistent hypothesis hS , i.e. R̂S(hS) = 0, then
∀ϵ > 0, δ > 0,

m ≥ 1

ϵ

(
log |H|+ log

1

δ

)
⇒ PS∼Dm [R(hS) ≤ ϵ] ≥ 1− δ

Equivalently, ∀ϵ > 0

PS∼Dm

[
R(hS) ≤

1

m

(
log |H|+ log

1

δ

)]
≥ 1− δ

.
That is, the success of the learning algorithm depends on

Sample size (the larger the better)
Hypothesis set size (the smaller the better)
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The stochastic output case
Sample (data set) S = {(x1, y1)), . . . , (xm, ym)} for (xi, yi)

i.i.d.∼ D
independent and identically distributed (i.i.d.) sampled from
unknown data distribution D
Find h that minimizes

R(h) = P(x,y)∼D[L(h(x), y)]

A is an agnostic PAC learning algorithm if ∃ an algorithm A
returning hS and a polynomial function poly(·, ·, ·, ·) s.t.
∀ϵ > 0, δ > 0,D over X × Y it holds

PS∼Dm [R(hS)−min
h∈H

R(h) ≤ ϵ] ≥ 1− δ

for any m ≥ poly(1/ϵ, 1/δ, n, size(c)).
A is an efficient agnostic PAC learning algorithm if its time
complexity is poly(1/ϵ, 1/δ, n, size(c)).
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Bayes Error

Bayes error: R∗ = minhR(h)

Bayes hypothesis: R(h) = R∗

When y = c(x), R∗ = 0 as Bayes hypothesis can be chosen as c

∀x ∈ X, hBayes(x) = argmax
y∈Y

P[y|x]
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Measuring the capacity of infinite H
Way 1: Rademacher complexity

Assume L : Y × Y 7→ [0, 1], then Empirical Rademacher
complexity

R̂S(H) = Eσ

[
max
h∈H

1

m

m∑
i=1

σiL(h(xi), yi)
]

where σ = (σ1, . . . , σm) with σi (Rademacher variables) taking
random values in {−1,+1}.
Rademacher complexity: Rm(H) = ES∼Dm [R̂S(H)].
and its learning bound, with probability at least 1− δ

E[L(h(x), y))] ≤ 1

m

m∑
i=1

L(h(xi, y) + 2Rm(H) +

√
log(1/δ)

2m

E[L(h(x), y))] ≤ 1

m

m∑
i=1

L(h(xi, y) + 2R̂S(H) + 3

√
log(2/δ)

2m
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Measuring the capacity of infinite H
Way 2: Vapnik-Chervonenkis Dimension

Growth function ΠH : N → N is

∀m ∈ N, ΠH(m) = max
{x1,...,xm}⊆X

∣∣∣{(h(x1), . . . , h(xm))}
∣∣∣.

Assume Y = {−1,+1} then

R(h) ≤ R̂S(h) +

√
2 logΠH(m)

m
+

√
log(1/δ)

2m

Vapnik-Chervonenkis (VC) Dimension:

V C(H) = max{m : ΠH(m) = 2m}

If ΠH(m) = 2m, the set S is said to be shattered by H.
Assume Y = {−1,+1} then

R(h) ≤ R̂S(h) +

√
2V C(H) log(em/V C(H))

m
+

√
log(1/δ)

2m
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Empirical Risk Minimization (ERM)
Model selection: The choice of H
The estimation-approximation dilemma

R(h)−R∗︸ ︷︷ ︸
excess error

=
(
R(h)− inf

h∈H
R(h)

)
︸ ︷︷ ︸

estimation error

+
(
inf
h∈H

R(h)−R∗
)

︸ ︷︷ ︸
approximation error

Agnostic PAC-learning considers only estimation error.
Empirical Risk Minimization:

AERM (S,H) =
{
hERM
S

∣∣∣argmin
h∈H

R̂S(h)
}

the performance of which can be bounded as

P
[
R(hERM

S )− inf
h∈H

R(h) > ϵ
]

≤ P
[
sup
h∈H

|R(h)− R̂S(h)| >
ϵ

2

]
≤ 2e−2m(ϵ−Rm(H))
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Structural Risk Minimization (SRM)
ERM disregards the complexity of H and often performs poorly
because of the estimation-approximation dilemma.
Choose large H =

⋃
k>1Hk such that Hk ⊂ Hk+1, ∀k ≥ 1

SRM hinges on the bound below

R(h) ≤ R̂S(h) +Rm(Hk(h)) +

√
log k

m
+

√
log(2/δ)

2m

and performs

ASRM (S,H) ={
hSRM
S

∣∣∣∣∣ argmin
k≥1,h∈Hk

R̂S(h) +Rm(Hk) +

√
log k

m

}
with bound

R(hSRM
S ) ≤ inf

h∈H

(
R(h) + 2Rm(Hk(h)) +

√
log k(h)

m

)
+

√
2 log(3/δ)

m
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Remember this plot?

Figure: Goodfellow et al., Deep Learning, MIT Press, 2016
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