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The reward hypothesis
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Fig. 1. The reward-is-enough hypothesis postulates that intelligence, and its associated abilities, can be as ing the maximisation of reward

by an agent acting in its environment. For example, a squirrel acts so as to maximise its consumption of food (top, reward depicted by acorn symbol), or
a Litchen robot acts to maximise cleanliness (bottom, reward depicted by bubble symbol). To achieve these goals, complex behaviours are required that
exhibit a wide variety of abilities associated with intelligence (depicted on the right as a projection from an agent’s stream of experience onto a set of
abilities expressed within that experience).

Figure: D. Silver et al., Reward is enough, Artif. Intl., 2021




and its evidence
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The reinforcement learning setup

Supervised learning

Environment —

Predictor

Reinforcement learning

N

Environment

Agent

N

We aim to model

@ Systems where decisions are made in stages

@ Immediate cost of current decision affects future costs
@ Find decision making policies that minimize total cost
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Terminology (Sutton view)

state

l i reward | |

action

T: Find a mapping (policy) 7 from states s to actions a.
P: Maximize cumulative reward (return) G = +ro + ...
E: An RL data set looks as below:

D ={(s' ,aﬁ”, ”) (587, a8, r), o (s 0
{620, (42,62, 622}
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Episodic and continuous tasks

@ State sequences of episodic tasks break naturally (i.e. a chess
game):

SlvA17R2a S2uA2aR3,SB,A3,R47S4 = Se (EpiSOde 1)
Slv A17 R2a 827 A27 R3) 835 A3a R47 S4)A47 R57 S5 = Se (EpiSOde 2)
S17 A17 R27 327 A27 R37 53 - 86 (EpiSOde M)

where s, is the end state.
@ Continuous tasks never end.
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The Markov Property

Given a good enough description of present, the future is independent
of the past:

P(S41]St) = P(St+1(S1,- -+, St).

@ Does not mean we do not care about the past.
@ Means we can encapsulate it in some careful definition of state.
@ Encourages effective state design.

@ Greatly simplifies the system of random variables we need to
tackle.
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The Markov Process

A tuple of two entities (S, P), where
@ S is the set of environment states.

@ P = P(Sy+1|S;) is the environment dynamics model.
Also known as the transition probability distribution.
| will call it the transition model.
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The Markov Reward Process

A tuple of four entities (S, P, R,~), where
@ S is the set of environment states: S; = s with s € S, V.
@ R is the set of rewards: R, = r withr € R, Vr.
@ v € [0,1] is the discount factor.

® P = P(Ry41, St+1|S:) is the environment dynamics model that
naturally decomposes according to the chain rule as

P(Ryy1,St4+115t) = P(Riy1|Se41,St) X P(Si41/5¢)

Reward model transition model

We keep the assumption that the state transitions follow the
Markov property

P(St+1|5t) = P(St—i-l"sh e 7St)-
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Random variables of an episode

Take the episode below:
Sl’ R27 S2a R3a SS

How would its joint distribution decompose?
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Random variables of an episode
First follow the chain rule (this time in probability theory, not calculus):

P(S1, Ry, S2, R3,S3)

= P(S3,R3,S2,R2151)P(51)
P(Ss, R3, S2|Ra, S1)P(R2|S1)P(51)
P(S3, R3|Sa, R, S1)P(S2| Rz, S1) P(R2|S1) P(S1)
P(S3|Rs3, S2, Re,S1) P(R3|S2, Ra, S1) P(S2|R2, S1)

P(S53]52) P(Rs3]S2) P(S2]51)

P(R2|S1)P(51).

= P(S3|52) P(R3|S2) P(52]S1) P(R2|S1) P (Sh).

Red: Markov property.

Blue: Reward model.
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Return

Cumulative discounted reward starting from timestep ¢ on

[e.e]

Gt 2 Riy1 +YRo+-- = ZWthJrkﬂ-
k=0

@ Y*R, ;.1 is the present value of the future reward Ry 1.
@ ~ = 0: Myopic return model
@ ~ = 1: Far-sighted return model
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Why should we discount reward?

Account for two main risk factors:
@ The environment model is not perfect.

» Near future can be predicted more accurately than far future.
» Make decisions based more on certain knowledge and less on
uncertain knowledge (but based still on both).

@ The learning model is not perfect.

» We are up to learning to decide. The model itself will remain largely
imperfect along the way.

» How much would you rely on the advice of a child about how to

invest your money for profit to come 20 years later?
(what if it were an adult?)
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Example: Pole balancing

Goal: Keep the cart on the track and the pole hinged on it away from
falling down.

Can be modeled in both ways:
@ Episodic: +1 reward per time step without failure.
@ Continuous: -1 discounted reward for failure, 0 otherwise.
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Recursiveness of Return

Gy = R1t—|-1 + ’th+2 + ’72Rt+3 + ’73Rt+4 + ...
= Rip1+ 7 |Riqo + vRigs +72Rt+4 _|_]

Giy1

£ Ry + Gt

Makes the divide-and-conquer strategy applicable to RL.
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The state-value function

v(s) = E[G¢| St = s]

Where does E|[-] originate from? What is the source of stochasticity
here?
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The state-value function

v(s) = E[Rp1 + YRit2 + 7V Reys + 7 Rega + -]

@ Expectation needs to be taken over all random variables
517527"' aR17R27”'

@ The problem is that we have infinitely many of them!
» Markov: State transitions follow the Markov property.
» Reward: We model rewards as random variables.
» Process: We have a collection of potentially unlimited set of
random variables (i.e. a stochastic process).
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The state-value function

U(S)ZZZZ Z"'[Rt+1+'7Rt+2+’Y2Rt+3+'-'

St Si+1 Ri41 Riqo
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The Bellman Equation
Shows how the recursiveness of return can be manipulated.

v(s) = E[G¢|S; = s]
=E[Riy1 +vGi41|S; = §]
= E[Ri+1|St = s] +YE[Gi+1]|S;: = s].
(rs)
Let us take a closer look at the expectation in the second term

E[GH_l’St == S] == Z P[St+1 == S,|St == 8] E[Gt+1|St == S,St+1 == S/] .
s'eS
v(s’)

Then we get

v(s) =E[Rey1| S +7 Y PlSip1 = 8|S = s v(s).
s'eS

P,y
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The vectorized Bellman Equation

Let us repeat the Bellman equation for all possible states and store the

outcomes into a vector

v(s=1)
. v(s =2)
v(s =n)

= (r) +7Pv,

[(r1) + 7Y ges Prov(s)
(r2) + 7Y ges Posv(s))

_(Tn> + Zs/es PnS’U(SI)

(r1) > ses Prsv(s’)
(r2) > ses Pasv(s)
. +ﬁy .
_<rn> ZS’ES PnS’U(S/)
—_——
(r) Pv

where P is the transition matrix with P[s, s'] = Psy.
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Solving the Bellman Equation for the Value
Function

v(I—+P) = {r)

@ Has complexity O(n?) for n states.

@ Hence needs to be approximated for many real-world applications.

@ How to approximate is a large portion of the remaining course

material!
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The Markov Decision Process
A tuple of five entities (S, A, P, R,~), where
@ S is the set of environment states: S; = s with s € S, V.
@ A is the set of actions: A; = a witha € A, Va.
@ R is the set of rewards: R, = r withr € R, Vr.
@ v € [0, 1] is the discount factor.

® P = P(Ry41, St+1|5t, Ar) is the environment dynamics model
that naturally decomposes according to the chain rule as

P(Ri1,St41|St, At) = P(Ri41|St, Ar) X P(Si41|Se, Ar) -

Reward model transition model

We keep the assumption that the state transitions follow the
Markov property

P(Si1]S:) = P(Sei1|Sh,-+ -, S0,
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Policy

Mind that we thus far had a new random variable A; without an

assigned distribution. That distribution is the policy, which is defined
as a mapping from states to actions

W(At|st) = P(At|5t)

@ MDP models the environment.
@ Policy models the agent.
@ Our primary concern will be stationary policies

Ay ~ 7(-S)),Vt > 0,

which behave invariantly of time.
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MDP as a MRP

We will typically have an MDP (S, A, P, R, ~) with an attached policy 7.
Integrate out all actions wrt the policy distribution

PSﬂ:S/ = Z 7T(At = Q|St = S)P(St+1 = S/‘St = S,At = a),
acA

T =) w(Ar = alS = ) P(Ria|S) = 5, 4 = a).
acA

Similarly to the MRP case, we construct a transition matrix and a
reward vector by evaluating r{ for all states and P, for all state pairs:

P7[s,s'] = P, r'[s] =r].

We finally attain an MRP with (S, P™,R,~).
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