
4- Dynamic Programming
Melih Kandemir

University of Southern Denmark
Department of Mathematics and Computer Science (IMADA)

kandemir@imada.sdu.dk

Fall 2022

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 1 / 31

Dynamic programming (DP)
Dynamic: sequential (temporal)
Programming optimizing a program
(a sequence of operation steps)

DP is applicable to problems that consist of
optimal substructure

▶ there exists a notion of optimality that can be proven
▶ optimal solution can be decomposed into subproblems

overlapping subproblems
▶ subproblems recur many times
▶ solutions can be cached and reused

DP suits perfectly for solving MDPs
optimal substructure: Bellman equation decomposes
recursively (optimality principle yet to come!)
overlapping subproblems: Value function stores and reuses
solutions

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 2 / 31

The Newton-Leibniz duality of RL

Richard Bellman Lev Pontryagin

State st State xt
Action at Control ut
Reward rt Cost g(i, u, j)
Value V (st) Cost-to-go J(xt)
HJB Equation Minimum principle
Taylor expansion Calculus of variations
Sutton Bertsekas

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 3 / 31

Terminology (Bertsekas view)

State set: S = {0, 1, . . . , n}, where 0 is the terminal state if exists
Policy: A sequence π = {µ0, µ1, . . .} such that
µk(i) ∈ U(i),∀i ∈ S, where U(i) is the set of control actions
Transition probabilities:

P (ik+1 = j|ik = i) = pij(µk(i))

Expected cost of a finite-horizon (episodic) problem:

Jπ
N (i) = E

[
αNG(iN) +

N−1∑
k=0

αkg(ik, µk(ik), ik+1)

∣∣∣∣∣i0 = i

]

where g(i, u, j) is cost, G(iN) terminal cost, and αk ∈ (0, 1] is a
discount factor and expectation is wrt the Markov chain
{i0, i1, . . . , iN} ∼

∏N−1
k=0 pikik+1

(µk(i)).

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 4 / 31

Cost-to-go vectors

Optimal N−stage cost-to-go:

J∗
N (i) = min

π
Jπ
N (i)

and in vector form J∗
N = (Jπ

N (1), . . . , Jπ
N (n))

Infinite horizon problem

Jπ(i) = lim
N→∞

E

[
N−1∑
k=0

αkg(ik, µk(ik), ik+1)

∣∣∣∣∣i0 = i

]

for which optimal cost-to-go vector is J∗.
Stationary policy: π = {µ, µ, . . .} and its cost-to-go Jµ.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 5 / 31

Dynamic programming
One-stage case

J∗
1 (i) = min

µ0

n∑
j=1

pij(µ0(i))(g(i, µ0(i), j) + αG(j))

= min
u∈U(i)

n∑
j=1

pij(µ0(i))(g(i, u, j) + αG(j))

Let us take a leap of faith and generalize to

J∗
k (i) = min

u∈U(i)

n∑
j=1

pij(µ0(i))(g(i, u, j) + αJ∗
k−1(j))

then starting with J∗
0 (i) = G(i) and solving recursively

J∗
0 → J∗

1 → . . . J∗
k .

This is a dynamic programming algorithm.
M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 6 / 31

Proof that DP will work for RL

Express µk = {u, µk−1}, u ∈ U(i) and do

J∗
k (i) = min

u∈U(i),πk−1

n∑
j=1

pij(u)(g(i, u, j) + αJ
πk−1

k−1 (j))

= min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αmin
πk−1

J
πk−1

k−1 (j))

= min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJ∗
k−1(j))

■

This identity is known as the Principle of Optimality.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 7 / 31

General theory

Definition
Stationary µ is proper if

ρµ = max
i=1,...,n

P(in ̸= 0|i0 = i, µ) < 1

and improper otherwise.

Two key assumptions:
i) There exists at least one proper µ
ii) For every improper µ, ∃i s.t. Jµ(i) → ∞.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 8 / 31

The Bellman backup operator

One iteration of DP:

(TJ)(i) = min
u∈U(i)

n∑
j=0

pij(u)(g(i, u, j) + J(j))

where we assume J(0) = 0. This is the optimal cost-to-go for
one-stage cost g and terminal cost J .
Also define:

(TµJ)(i) =

n∑
j=0

pij(µ(i))(g(i, µ(i), j) + J(j))

where we assume J(0) = 0. This is the cost-to-go for policy µ
one-stage cost g and terminal cost J .

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 9 / 31

The Bellman backup operator

Define n× n matrix Pµ with ijth entry pij(µ(i)). Then

TµJ = gµ + PµJ,

where gµ(i) =
∑n

j=0 pij(µ(i))g(i, µ(i), j).
Denote k iteration DP algorithm as

(T kJ)(i) = (T (T k−1J))(i),

(T k
µJ)(i) = (Tµ(T

k−1
µ J))(i)

with (T 0J)(i) = J(i) and (T 0
µJ)(i) = J(i).

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 10 / 31

Preliminaries

Monotonicity lemma
For any k, stationary µ

J(i) ≤ J̄(i) ⇒ (T kJ)(i) ≤ (T kJ̄)(i)

⇒ (T k
µJ)(i) ≤ (T k

µ J̄)(i)

Constant offset lemma
For any k, J , stationary µ and r ∈ R+

(T k(J + re))(i) ≤ (T kJ)(i) + r,

(T k
µ (J + re))(i) ≤ (T k

µJ)(i) + r.

where e is a vector of ones. Reverse inequalities if r < 0.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 11 / 31

Main results

Proposition
Assume the two assumptions above hold. Then
(a) J = TJ ⇐⇒ J = J∗.
(b) limk→∞ T kJ = J∗, ∀J .
(c) Stationary µ is optimal ⇐⇒ TµJ

∗ = TJ∗.
(d) For every proper µ and every J

lim
k→∞

T k
µJ = Jµ,

Jµ = TµJ
µ

and Jµ is the unique solution of this equation.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 12 / 31

Value iteration
Synchronous update

repeat
J ′ := TJ

until J ′ = J

Equivalently T kJ as k = 1, 2,
Requires infinite iterations to converge.
Converges in O(n) if Pµ∗

is acyclic, i.e. edge (i, j) exists if i ̸= 0
and pij(µ

∗(i)) > 0 and initialized J(i) = ∞, i ̸= 0.
Converges to J∗.

Asynchronous update (Gauss-Seidel method)

(FJ)(i) = min
u∈U(i)

[n∑
j=0

pij(u)g(i, u, j) +

i−1∑
j=1

pij(u)(FJ)(j) +

n∑
j=i

pij(u)J(j)
]

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 13 / 31

Policy iteration

repeat
Jµk

:= (I − Pµk
)−1gµk

▷ Policy evaluation
Tµk+1

Jµk := TJµk ▷ Policy improvement
until Jµk+1 = Jµk

Policy improvement step in more detail

µk+1(i) = arg min
u∈U(i)

n∑
j=0

pij(u)(g(i, u, j) + Jµk(j))

Converges in finite iterations.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 14 / 31

Policy improvement theorem
Proposition.
The policy iteration algorithm generates an improving sequence of
proper policies µ1, µ2, . . ., i.e.

Jµk+1 ≤ Jµk , ∀k = 1, 2, . . .

and terminates at J∗.

Proof.
Given a proper µ, we get Jµ = TµJ

µ ≥ Tµ̄J
µ = TJµ. Due to

monotonicity lemma, Jµ ≥ T k
µ̄J

µ holds also for k = 1, 2, Now
assume µ̄ is not proper, T k

µ̄J
µ → ∞, which contradicts monotonicity

lemma. Hence µ̄ is proper. From main result (d), we have
limk→∞ T k

µ̄J
µ̄ = J µ̄. If µ is nonoptimal, J µ̄(i) < Jµ(i) for some i.

Otherwise Jµ = TJµ ⇒ Jµ = J∗ ⇒ µ = µ∗. Hence each step either
improves or equilibrium is found with optimal policy. As the number of
policies is finite, the sequence terminates. ■

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 15 / 31

Multistage lookahead policy iteration

repeat
Jµk

:= (I − Pµk
)−1gµk

▷ Policy evaluation
Tµk+1

Tm−1Jµk := TmJµk ▷ Policy improvement
until Jµk+1 = Jµk

Core idea: Plan for long horizon to determine the immediate
action.
Important observation: Jµk+1 = T l→∞

µk+1
Jµ ≤ TmJµk ≤ Jµk

TmJµk approaches Jµk+1 as m increases, hence choose
maximum m the computation budget allows.
The tightness of the bound will be decisive for approximate
cost-to-go functions.
Since Jµk+1 ≤ Jµk , all convergence properties of the single-stage
version are inherited.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 16 / 31

Policy iteration as actor-critic

Figure: Image from Bertsekas, Neuro-dynamic programming

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 17 / 31

Discounted problems

The new operators

(TJ)(i) = min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJ(j))

(TµJ)(i) =
n∑

j=1

pij(µ(i))(g(i, u, j) + αJ(j))

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 18 / 31

Discounted problems
The corresponding lemmas.

Monotonicity lemma
For any k, stationary µ

J(i) ≤ J̄(i) ⇒ (T kJ)(i) ≤ (T kJ̄)(i)

⇒ (T k
µJ)(i) ≤ (T k

µ J̄)(i)

Constant offset Lemma
For any k, J , stationary µ and r ∈ R+

(T k(J + re))(i) = (T kJ)(i) + αkr,

(T k
µ (J + re))(i) = (T k

µJ)(i) + αkr.

where e is a vector of ones.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 19 / 31

Bellman backup operator is contraction
Define maximum norm as ||J ||∞ = maxi |J(i)|.

Lemma (Contraction)
∀J, J̄ and µ:

||TJ − T J̄ ||∞ ≤ α||J − J̄ ||∞,

||TµJ − TµJ̄ ||∞ ≤ α||J − J̄ ||∞.

Proof
Denote c = maxi=1,...,n |J(i)− J̄(i)|. Then

J(i)−c ≤ J̄(i) ≤ J(i) + c, i = 1, . . . , n

⇒ (TJ)(i)− αc ≤ (T J̄)(i) ≤ (TJ)(i) + αc

⇒ |(TJ)(i)− (T J̄)(i)| ≤ αc.

Second inequality follows by choosing µ(i) as the only available control
at state i ■

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 20 / 31

Temporal difference based policy iteration

Value iteration converges too slowly, especially when α ≈ 1

Policy evaluation does not scale to large state spaces
Best of both worlds is possible if an equivalent problem can be
defined with reduced discount factor.
This is possible only if the expectation of the one-stage cost is
zero.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 21 / 31

λ-policy iteration method

Maintain a sequence (Jk, µk), treat Jk ≈ Jµk , and do
i) Tµk+1

Jk = TJk

ii) Calculate

dk(i, j) = g(i, µk+1(i), j) + αJk(j)− Jk(i)

as the one-stage cost of µk+1 for an αλ discounted DP with
pij(µk+1). The cost-to-go is then

∆k(i) =

∞∑
m=0

E[(αλ)mdk(im, im+1)|i0 = i], ∀i.

iii) Jk+1 = Jk +∆k

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 22 / 31

The policy-value iteration continuum

When λ = 1, we have

∆k(i) =

∞∑
m=0

E[αmdk(im, im+1)|i0 = i]

=

∞∑
m=0

E[αmg(im, µk+1(im), im+1)

+ αm+1Jk(im+1)− αmJk(im)|i0 = i]

=

∞∑
m=0

E[αmg(im, µk+1(im), im+1)|i0 = i]− Jk(i)

= Jµk+1(i)− Jk(i) ⇒ Jk+1 = Jµk+1 ⇒ Policy iteration!

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 23 / 31

The policy-value iteration continuum

When λ = 0, we have

Jk+1(i) = Jk(i) + E[dk(i1, i0)|i0 = i]

= Jk(i) + E[g(i0, µk+1(i0), i1) + αJk(i1)− Jk(i0)|i0 = i]

= Jk(i) + E[g(i0, µk+1(i0), i1) + αJk(i1)|i0 = i]− Jk(i0)

= E[g(i0, µk+1(i0), i1) + αJk(i1)|i0 = i]

⇒ Jk+1 = Tµk+1
Jk = TJk ⇒ Value iteration!

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 24 / 31

Theoretical properties of λ-policy iteration
Theorem [Contraction]
Consider MkJ = (1− λ)Tµk+1

Jk + λTµk+1
J with Tµk+1

satisfying
||Tµk+1

J − Tµk+1
J̄ || ≤ β||J − J̄ || for β < 1 and any (J, J̄), then

i) ||MkJ −MkJ̄ || ≤ βλ||J − J̄ ||

ii) Mm
k J = (1− λ)

[∑m−1
i=0 λiT i+1

µk+1
Jk

]
+ λmTm

µk+1
J, ∀m ≥ 1

iii) Jk+1 is the unique fixed point of Mk, i.e. J = MkJ , and
Jk+1 = (1− λ)

∑∞
m=0 λ

mTm+1
µk+1

Jk holds.

Theorem [Rate of convergence]
i) If α < 1, then Jk → J∗. Furthermore ∃ k̄ such that ∀k > k̄

||Jk+1 − J∗|| ≤ α(1− λ)

1− αλ
||Jk − J∗||

ii) If α = 1, µ proper, and TJ0 ≤ J0, then Jk → J∗.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 25 / 31

Gridworld

Figure. Sutton and Barto, MIT Press, 2017. (Right) value function of a
random policy.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 26 / 31

Gridworld optimal solution

Figure. Sutton and Barto, MIT Press, 2017. (Middle:) Value function of
the optimal policy. (Right:) Optimal policy.

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 27 / 31

Solving 4× 4 GridWorld with policy improvement

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 28 / 31

Solving 4× 4 GridWorld with policy improvement

Figure. Sutton and Barto, MIT Press, 2017

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 29 / 31

Solving 4× 4 GridWorld with policy improvement

All policies are optimal from K = 3 on.

Figure. Sutton and Barto, MIT Press, 2017

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 30 / 31

Solving 4× 4 GridWorld with policy improvement

All policies are optimal from K = 3 on.

Figure. Sutton and Barto, MIT Press, 2017

M. Kandemir (SDU) 4- Dynamic Programming Fall 2022 31 / 31

