M. Kandemir (SDU)

5- Value-based Simulation

Melih Kandemir

University of Southern Denmark
Department of Mathematics and Computer Science (IMADA)
kandemir@imada.sdu.dk

Fall 2022

5- Value-based Simulation Fall 2022

Simulation-based methods

T4y = 3 pis (1) 9y,) + @ (7))
j=0

Dynamic programming is not feasible when:
i) The state space is too large: n — oo
ii) Transition probabilities are not known: p;;(x(i)) =?
Approximate by simulation, i.e. collect samples from the environment:
7:07@.17' : 'aiN
where
ir, ~ Cat(pir (1(i)), pia(ue(d)), - .., pin(p(3))), k=0,...,N -1

The symbol ~ means to call the random number generator. Then
simply evaluate

g(io, (o), 11), (i1, p(in), i2), ..., g(in—1, u(in—1),iN)-

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 2/32

Monte Carlo (MC) simulation

Assume a sample set vy,...,uxy ~ p(V). Then the sample mean is
Z ve ~Efp] =Y P(V
veS

Note that this quantity can be calculated online:

My =My +

1
N+1(UN+1 - My).
If the sample set is i.i.d. and E[v] = m, then

1 N
= NZIE[Uk] =m
k=1

If m = E[Mxy] then My is an unbiased estimator of m. We also have

2
Var(My) = N2 Z Var(vg) a

N.
limy_yoo Var(My) = 0 = My, My, ... - mw.p. 1 (law of large #s).

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022

3/32

Monte Carlo RL

@ (+) learns directly from episodes of experience.

@ (+) is model-free (i.e. requires no knowledge of MDP transitions
and rewards).

@ (+) is based only on generated sample transitions, not complete
distributions of all possible transitions.

@ (-) works only for episodic tasks.
@ (0) applies Monte Carlo integration to value approximation.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 4/32

Wald’s identity

When N is a random variable and we condition on it
N

1

N Z Uk

k=1

E[My]=E|E N|| =E[m]=m

but E[My] # m hence My is a biased estimator of the marginal.
Suppose vy, va, ... have common mean and E[vg|N > k] = E[v], then

N o]
E ka] ZIP’ Elvg|N > k] = E[v, ZIP’N>k
k=1

=1

o0

= E[v] Z Z P(N =n) = E[v] Z nP(N =n)

k=1 n=k n=1
= E[v1]E[N]

This is the Wald’s identity very useful for convergence proofs in RL.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 5/32

Policy evaluation with MC simulation
Simulate a trajectory until terminal state: i, i1,...,75 such that iy = 0.
This is called an episode. Denote k,,(i) as the time step when a state
i is encountered mth time. Then the observed cost-to-go is
N—-1
c(im) =Y glir, plin), int1)
ke=km (1)
and the MC estimate of the true cost-to-go for M encounters is
1 M
JH(i) = Ele(i,m)] ~ 5 mzzjl c(i,m).

This is called the every-visit method. Start with J(i) = 0, Vi and
update after each encounter

J(ir) == J (i) +v(ix) (c(ir, miy) — J(ix))

where (i) = 1/m;, with m;, the count of visits to i; until time step k.
Possible to use other step sizes as long as the Robbins-Monro

conditions are satisfied.
M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 6/32

Every-visit estimator is biased but consistent
Denote c(i,m, k) as ¢(i, m) of kth of K simulated trajectories, K; of
which visit 7. Then

> ki >1} 2om—t €M, k)

lim

Koo 2 (kg 1}
— lm % Z{kmzl} > (i, m, k)
Fimos 7 2kl >1)
B[Sy cliom, B)|me > 1] B[E[SS0 cli m, k) o> m
- E[ng|ng > 1] - E[ng|ng > 1]
_ Ele(i,1,k)ny] Ele(d, 1, k)|ng, > 1E[ngln, > 1])
B E[nk|nk’ > 1] B E[nk|nk > 1] o

where E[c(i, m, k)|n, > m] = J*(i) due to Markov property. Estimator
2 (=13 €005 1)
K;

is for the first-visit method and it is also consistent.
M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 7/32

MC policy evaluation with Temporal Difference

J(ig) = J(ig) + v

N-1
(Z 9(im, im—i-l)) - J(Zk)]

m=k

N-1
= J(ix) +7 (Z 9(ims imt1) + J (im1) — J (i))]
m=k dom

@ dyy = glim,ims1) + J(ims1) — J(im) is called the Temporal
Difference (TD)

® g(im,im+1) + J(ims1) and J(i,,) estimate the same quantity.
Backpropagate the mismatch as error, hence the name.

@ Also possible to do sequential updates

J(ix) == J(ig) + vdm, m=1,...,N—1.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 8/32

Multi-step TD

Denote by co an unknown time step N, with iy, = 0.

o0

> 9ikimy ikime)

m=0

JH(iy) =E = Elg(i, ik+1) + J" (ik11)]

The stochastic approximation of the latter is

JH (i) == J(ig) + (9 (ig, thg1) + J (ig41) — J (ix))

One can also go with stochastic approximations for [steps and
bootstrap after that point:

l
JH(ig) =E Z 9(iktms tkrmt1) + I (Tkt141)

m=0

The question is what [should be.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022

9/32

TD())

Use domain knowledge if available or the answer below otherwise:

JH (i) [Z)\l < Z (Tt Ttmt1) + J“(ik+l+1)>] :

m=0

Interchanging the sum order and using (1 —) >7° Al = \™ gives
JH (i)

=E|{(1-X) Z 9(iktm, Thotm+1) Z A+ Z T (iggi41) (N = /\l+1)]

=0 l=m =0

m
=E Z AT <Q(ik+m,’ik+m+1) + T (ipgmet1) — J“(’ik+m)) + JH (k)

M. Kandemir (SDU) 5- Value-based Simulation

TD())

The corresponding Robbins-Monro stochastic approximation is

J(ik) = J(ig) +v > X" Fdy,
m=k
A =1 = MC policy evaluation algorithm, a.k.a. TD(1).
A=0= 1-step TD, a.k.a. T'D(0).
A < 1 discounts the effect of state transitions on the cost estimate
of the current state. Different from the cost discount factor!
Every visit

M o)
J(@) = J@) +y> Y Ay,

j=1m=m;

First visit

J(@) = J@) +y Y ATy,

m=m1

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 11/32

Online versus offline policy evaluation
Assume a simulated trajectory ig, i1, ..., iN-

@ Offline:
J(io) == J(io) + y(Xdo + A'dy + Ndy + ...
J(i1) == J(i1) +y(\dy + Ndy +..)
@ Online:
J(ig) = J(ip) +yA\°do after (ig, i)
J(io) := J(io) +7A'dy after (iy, is)
J(i1) == J(i1) + yA\0d;
J(ig) == J(io) +YA°d2 after (ia, i3)
. I

M. Kandemir (SDU) 5- Value-based Simulation

Eligibility coefficients

J(@) = J@) + 7Y zm(i)dm
m=0

where z,,(i) are called eligibility coefficients.

(@) zm (i) = Am—m m > my is first-visit TD(\)
(b) zm(i) = Z{j|mj§m} AT is every-visit TD(\)
(€) zm(i) = N, m; < m < mjq1,Vj is restart TD())

@ The restart variant resets z,,(7) at every new visit to i, hence
treats each trajectory between two visits as if they are separate.

@ It is observed that that restart variant outperforms the every-visit
variant.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 13/32

Q-Factors

Q (iyu) = Y pij(u)(g(i,u, §) + J*(5)
j=0

Then policy improvement reads as

o s —1.....n
[i(i) = arg Join Q"(i,u), i=1,...,n
@ Any i may tend to explore region R more than the rest. Hence
J# (i) will have good quality if i € R.
@ If y drives i to R with RN R = (), then J#(i) will be poor for i € R.
So decide the initial states well.

@ One solution is iterative resampling: Do not update p if previous
simulation ends in i € R. Simulate few times with different i € R

using the old p.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 14/32

Optimistic policy iteration

@ The actor uses p for control and critic observes outcome to
compute J*.

@ In vanilla policy iteration, actor and critic communicate rarely, as it
takes multiple steps to solve policy evaluation while a single step
to do the policy update.

@ ltis in fact possible to update the policy before policy evaluation
converges. This approach is called optimistic policy iteration.

repeat
fore=1,...,Edo > Episodes
fork=0,...,N.—1do ‘ > Policy evaluation
J(ir) := g(in, p(ir), ip41) + o (ig41)
end for
end for
Ty JH =T JH > Policy improvement

until Jre+t = Jrt

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 15/32

When matrix inversion is infeasible

repeat
fore=1,...,FE do > Episodes
fork=0,...,N.—1do > Policy evaluation
ik+1 ~ Cat(pio(plin)), - - - s Pipn(1(ix)))
I(ig) 1= 71 pin (1(in)) (9ins (i),) + @I ()
end for
end for
Ly JHE =T JH > Policy improvement
until JHe+1 = JH

This is a smart way of doing asynchronous updates, where the
computation cost of the value of a state is proportional to its probability
of occurrence.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 16/32

When even one pass over states is infeasible

repeat
fore=1,...,FEdo > Episodes
fork=0,...,N.—1do > Policy evaluation
ikt1 ~ Cat(pio(p(ix)), - - - s Pign(p(ik)))
J(ir) := g(in, p(ir), ip41) + o (ig11)
end for
end for
Ty JH =T JH > Policy improvement
until JHe+1 = JH

Note that we actually do not need to know p;;(p(u)) if we are in a real
environment, as only taking action u(i;) would drive us to ij 1.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 17/32

Optimistic policy iteration with TD()\)

repeat
fore=1,...,Edo > Episodes
fork=0,...,N.—1do > Policy evaluation
ikt1 ~ Cat(pio((in)), - - -, Pign (1e(ix)))
di 1= g(ik, p(ix), k1) + J (Gg1) — J (i)
Mg, =M, Uk > Save visit time
end for
for:=0,...,ndo > Offline variant
T(@) i= T(@) + 7 omyerts ey X
end for
end for
Ty JHE =T K > Policy improvement
until JHe+1 = JHt

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 18/32

Optimism (and compute speed) at the extremes

repeat
fore=1,...,Edo > Episodes
fork=0,...,N.—1do > Policy evaluation
ikt1 ~ Cat(pio(p(ix)), - - - Pign (p(ik)))
J(' Jii= g(%u(ik),ikﬂ) + aJ (k1)
Ty, JHt =T JH > Policy improvement
end for
end for
until Jre1 = JHe

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 19/32

Value iteration with ultimate optimism
In terms of Q-factors, Bellman equation is expressed as

me g(i,u,3) + J*(4)), i=1,...,n

= Zpij(u) (9(%%]) = Q (uv)>
7=0
and value iteration as the update rule
w) :Zpij(u)< i,u,j) + Ien(}n Q(i, 1))
j=0
and generally with step size v € (0,1] as

Qi,u) :== (1 —~ pr ((¢,u,j) + min Q(i,v)).

veU (i)

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 20/32

Q-Learning

Approximate optimistic value iteration by replacing the expectation on
next state with a single sample.

fore=1,...,Edo > Episodes
fork=0,...,N.—1do > Value iteration
ik+1 ~ Cat(pio(p(ix)), - - - Pipn(p(ir)))

Q ik, plik)) == (1 — v)Q ik, p(ix))

+7| 9k, w, k1) + mingey) Qik+1,v)
end for
end for

Here the behavior policy (i) can be chosen in multiple ways
) e—Greedy: P(u(i) = u) = Lueu (1= €+ 1) + D oy
where u* = arg min, ¢y Q(7,v). Greedy (also on-policy) if € = 0,
i) Temperature-scaled softmax: For temperature parameter 7' > 0
. exp(—Q(i, ’U,)/T)
P(u(i) = u) = - .
i) =) = 5= o op(~QU, 0)/T)
M. Kandemir (SDU)

€

5- Value-based Simulation

Fall 2022 21/32

On-policy versus off-policy RL

@ Suppose the policy is greedy and the MDP is deterministic, then
the entire episode following iy is determined. Nothing to average!

@ Remedy: Take random actions = Exploring Starts (ES).
@ When the policy is arbitrarily random, it is hard to target important
states in large state spaces.

@ Classify RL methods into two:
» On-policy methods generate data from the policy being learned.
» Off-policy methods use different policies for learning and data
generation.
@ On-policy methods use soft policies for exploration, i.e.
P(u(i) = u) > 0, Vi, u.
@ Off-policy methods trade exploration and exploitation.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 22/32

Off-policy methods

Solving RL requires solving two conflicting subtasks:
@ exploration: learn as many states as possible
@ exploitation: learn important states better

But how to know which state is more important without knowing the
optimal policy? Use two policies instead of one:

@ target policy: policy being learned ()
@ behavior policy: policy that generates behavior (b)
Because 1 # b, we call this approach off-policy RL.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 23/32

e—greedy policy improvement theorem

Definition
Denote ,u(u| i) =P(u(i) = u). A policy u is called e—soft if
p(uli) > way forallu e U(i).

Theorem

For any e—soft policy p, the e—greedy policy n’ wrt Q* is an
improvement, i.e. J,, < J,..

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 24/32

Proof

70 = QG) = T Q)

_WZQ iu) + (1 - e)min Q"(i,u)

<= Z@ﬂ(z’,uwa—e)zm Q" (i, u)
U(0)] & —1lze

u

sums to 1

0] ;Q“(i=“) + XU:M(UIZ') Q" (i, u) — Xu: T @16
=" (ul)Qui, u) = J*(i) .

M. Kandemir (SDU) 5- Value-based Simulation

Importance Sampling (IS)

Intuition: Sample from a different distribution from the one being
integrated.

B [1(2)] = 3 Fn()

=Y 102y)

q(z)
then do Monte Carlo integration

(=1¥)

3

1 N
k=1

Importance weight

for a set of 2(¥) ~ ¢(2).

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 26/32

IS applied to MC-RL

Assume i, ..., iy is the MC sequence used to update state ig = ¢
® z = (ugy...,un—1)

® f(2) =00 9k, uk,iks1)

° p(2) = IIio mlurlin)ps,

® g(2) = ITilo bluklin)pis, .,

Then the importance weight is given as

TToss s lin)pt
w = Wi pluinBir?
ko D(Uklin)Pr]

which does not depend on transition probabilities! Note that we require

p(uli) > 0= b(uli) >0, V(i,u)

which is called the coverage assumption.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 27/32

Ordinary vs Weighted IS

Assume we sampled R sequences: uj, ~ b(uliy,), iy, ~ pz%ki2+1Vk, r

N—-1
ué’(i%7u%)7 R] (Ii]l\]?u}v) _> Z g(ii7ui7ii+1) = Cl
k=0
N-1
UORa(igvu{%)v SER) (zﬁ,u%) - Z g(iﬁ,ug,ik}il) =CRr
k=0

Calculate an importance weight for each

N-1
wr = [T wlurliz)/bukliy).
k=0

Then we can perform IS two ways

e Ordinary IS: J(i) := -+ > w,.C,

o Weighted IS: J(i) := S| [(Z;‘))C}

r=1 Wy

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 28/32

Ordinary vs Weighted IS

@ Ordinary IS is unbiased, but its variance is unbounded (due to the
importance weight). Problematic for loopy trajectories.

@ Weighted IS is biased, but its variance is bounded.
@ Weighted IS is preferred more often.

@ Bias of Weighted IS converges to zero. Hence, it is asymptotically
unbiased.

@ Ordinary IS has poor convergence properties.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 29/32

Incremental IS

Given a set of sequences with corresponding observed costs

C1,Cs, -+, Cy, all starting with the same state and having the
corresponding importance weights wq, ws, - - - , wy, we can do the
online update for ordinary IS as
. N1 .
J(@@) = J) + - {wkcr - J(’z,)},
,

and for weighted IS as follows. Define 3, = 3,_1 + w, with 3y = 0,

BTJT‘(Z) =Crw, + Br-1 Jrfl(i)
:Crwr + (Br - wr)t]rfl(i)
=Crw, + BrJrfl(i) - wr!]rfl(z’)
sy Croe+ @JT_;@) — wrdy 1 (i)

J(i) ==J (i) + % Cr — Jo1(i)

M. Kandemir (SDU)

5- Value-based Simulation

Fall 2022 30/32

Off-policy MC control

Initialize for all : € S,u € U:
Q(i,u) := arbitrary, [(i,u) =0, wp(i):= argmin, Q(7,u)
repeat forever
b := any soft policy
Sample episode {(ux, ik+1)|uk ~ b(ulix), ik+1 ~ p;l, .}
C:=0, w:=1
fork:=N—-1—0:
C:=C+ g(ik, Uk,ik+1)
Bir, ux) == B(i, ux) +w
Qir, ur) = QUir, ur) + 55705
u* = argmin, Q(ix,u)
if up # u* then break
w = w(1/b(ug|ir))
end for

7€ — Qik,)]

Zk Uk

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022

31/32

Pros and cons of off-policy RL

@ Off-policy methods incur higher variance, hence converge slower
than on-policy methods.

@ Off-policy methods have on-policy methods as their special case,
hence they are more general and powerful.

@ Off-policy methods can learn from a non-learning controller (e.g. a
human expert), on-policy methods cannot.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 32/32

