
5- Value-based Simulation
Melih Kandemir

University of Southern Denmark
Department of Mathematics and Computer Science (IMADA)

kandemir@imada.sdu.dk

Fall 2022

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 1 / 32

Simulation-based methods

Jµ(i) =

n∑
j=0

pij(µ(i))(g(i, u, j) + αJ(j))

Dynamic programming is not feasible when:
i) The state space is too large: n → ∞
ii) Transition probabilities are not known: pij(µ(i)) =?

Approximate by simulation, i.e. collect samples from the environment:

i0, i1, . . . , iN

where

ik ∼ Cat(pi1(µ(i)), pi2(µ(i)), . . . , pin(µ(i))), k = 0, . . . , N − 1.

The symbol ∼ means to call the random number generator. Then
simply evaluate

g(i0, µ(i0), i1), g(i1, µ(i1), i2), . . . , g(iN−1, µ(iN−1), iN).

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 2 / 32

Monte Carlo (MC) simulation
Assume a sample set v1, . . . , vN ∼ p(V). Then the sample mean is

MN =
1

N

N∑
k=1

vk ≈ E[v] =
∑
v∈S

P(V = v)v.

Note that this quantity can be calculated online:

MN+1 = MN +
1

N + 1
(vN+1 −MN).

If the sample set is i.i.d. and E[v] = m, then

E[MN] =
1

N

N∑
k=1

E[vk] = m.

If m = E[MN] then MN is an unbiased estimator of m. We also have

Var(MN) =
1

N2

N∑
k=1

Var(vk) =
σ2

N
.

limN→∞Var(MN) = 0 ⇒ M1,M2, . . . → m w.p. 1 (law of large #s).
M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 3 / 32

Monte Carlo RL

(+) learns directly from episodes of experience.
(+) is model-free (i.e. requires no knowledge of MDP transitions
and rewards).
(+) is based only on generated sample transitions, not complete
distributions of all possible transitions.
(-) works only for episodic tasks.
(o) applies Monte Carlo integration to value approximation.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 4 / 32

Wald’s identity
When N is a random variable and we condition on it

E[MN] = E

[
E

[
1

N

N∑
k=1

vk

∣∣∣∣∣N
]]

= E[m] = m

but E[MN] ̸= m hence MN is a biased estimator of the marginal.
Suppose v1, v2, . . . have common mean and E[vk|N ≥ k] = E[v1], then

E

[
N∑
k=1

vk

]
=

∞∑
k=1

P(N ≥ k)E[vk|N ≥ k] = E[v1]
∞∑
k=1

P(N ≥ k)

= E[v1]
∞∑
k=1

∞∑
n=k

P(N = n) = E[v1]
∞∑
n=1

nP(N = n)

= E[v1]E[N]

This is the Wald’s identity very useful for convergence proofs in RL.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 5 / 32

Policy evaluation with MC simulation
Simulate a trajectory until terminal state: i0, i1, . . . , iN such that iN = 0.
This is called an episode. Denote km(i) as the time step when a state
i is encountered mth time. Then the observed cost-to-go is

c(i,m) =

N−1∑
k=km(i)

g(ik, µ(ik), ik+1)

and the MC estimate of the true cost-to-go for M encounters is

Jµ(i) = E[c(i,m)] ≈ 1

M

M∑
m=1

c(i,m).

This is called the every-visit method. Start with J(i) = 0, ∀i and
update after each encounter

J(ik) := J(ik) + γ(ik)(c(ik,mik)− J(ik))

where γ(ik) = 1/mik with mik the count of visits to ik until time step k.
Possible to use other step sizes as long as the Robbins-Monro
conditions are satisfied.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 6 / 32

Every-visit estimator is biased but consistent
Denote c(i,m, k) as c(i,m) of kth of K simulated trajectories, Ki of
which visit i. Then

lim
K→∞

∑
{k|nk≥1}

∑nk
m=1 c(i,m, k)∑

{k|nk≥1} nk

= lim
Ki→∞

1
Ki

∑
{k|nk≥1}

∑nk
m=1 c(i,m, k)

1
Ki

∑
{k|nk≥1} nk

=
E
[∑nk

m=1 c(i,m, k)
∣∣∣nk ≥ 1

]
E[nk|nk ≥ 1]

=
E
[
E
[∑nk

m=1 c(i,m, k)
∣∣∣nk ≥ m

]]
E[nk|nk ≥ 1]

=
E[c(i, 1, k)nk]

E[nk|nk ≥ 1]
=

E[c(i, 1, k)|nk ≥ 1]E[nk|nk ≥ 1]

E[nk|nk ≥ 1]
= Jµ(i)

where E[c(i,m, k)|nk ≥ m] = Jµ(i) due to Markov property. Estimator∑
{k|nk≥1} c(i, 1, k)

Ki

is for the first-visit method and it is also consistent.
M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 7 / 32

MC policy evaluation with Temporal Difference

J(ik) := J(ik) + γ

[(
N−1∑
m=k

g(im, im+1)

)
− J(ik)

]

= J(ik) + γ

[(
N−1∑
m=k

g(im, im+1) + J(im+1)− J(im)︸ ︷︷ ︸
dm

)]

dm = g(im, im+1) + J(im+1)− J(im) is called the Temporal
Difference (TD)
g(im, im+1) + J(im+1) and J(im) estimate the same quantity.
Backpropagate the mismatch as error, hence the name.
Also possible to do sequential updates

J(ik) := J(ik) + γdm, m = 1, . . . , N − 1.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 8 / 32

Multi-step TD

Denote by ∞ an unknown time step Ne with iNe = 0.

Jµ(ik) = E

[∞∑
m=0

g(ik+m, ik+m+1)

]
= E[g(ik, ik+1) + Jµ(ik+1)]

The stochastic approximation of the latter is

Jµ(ik) := J(ik) + γ(g(ik, ik+1) + J(ik+1)− J(ik))

One can also go with stochastic approximations for l steps and
bootstrap after that point:

Jµ(ik) = E

[
l∑

m=0

g(ik+m, ik+m+1) + Jµ(ik+l+1)

]

The question is what l should be.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 9 / 32

TD(λ)
Use domain knowledge if available or the answer below otherwise:

Jµ(ik) = (1− λ)E

[∞∑
l=0

λl

(
l∑

m=0

g(ik+m, ik+m+1) + Jµ(ik+l+1)

)]
.

Interchanging the sum order and using (1− λ)
∑∞

l=m λl = λm gives

Jµ(ik)

= E

[
(1− λ)

∞∑
m=0

g(ik+m, ik+m+1)

∞∑
l=m

λl +

∞∑
l=0

Jµ(ik+l+1)(λ
l − λl+1)

]

= E

[∞∑
m=0

λm
(
g(ik+m, ik+m+1) + Jµ(ik+m+1)− Jµ(ik+m)

)]
+ Jµ(ik)

= E

[∞∑
m=k

λm−kdm

]
+ Jµ(ik)

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 10 / 32

TD(λ)
The corresponding Robbins-Monro stochastic approximation is

J(ik) := J(ik) + γ

∞∑
m=k

λm−kdm

λ = 1 ⇒ MC policy evaluation algorithm, a.k.a. TD(1).
λ = 0 ⇒ 1-step TD, a.k.a. TD(0).
λ < 1 discounts the effect of state transitions on the cost estimate
of the current state. Different from the cost discount factor!
Every visit

J(i) := J(i) + γ

M∑
j=1

∞∑
m=mj

λm−mjdm

First visit

J(i) := J(i) + γ

∞∑
m=m1

λm−m1dm

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 11 / 32

Online versus offline policy evaluation
Assume a simulated trajectory i0, i1, . . . , iN .

Offline:

J(i0) := J(i0) + γ(λ0d0 + λ1d1 + λ2d2 + . . .)

J(i1) := J(i1) + γ(λ0d1 + λ1d2 + . . .)

Online:

J(i0) := J(i0) + γλ0d0 after (i0, i1)

J(i0) := J(i0) + γλ1d1 after (i1, i2)

J(i1) := J(i1) + γλ0d1

J(i0) := J(i0) + γλ2d2 after (i2, i3)

J(i1) := J(i1) + γλ1d2

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 12 / 32

Eligibility coefficients

J(i) := J(i) + γ

∞∑
m=0

zm(i)dm

where zm(i) are called eligibility coefficients.
(a) zm(i) = λm−m1 , m ≥ m1 is first-visit TD(λ)
(b) zm(i) =

∑
{j|mj≤m} λ

m−mj , is every-visit TD(λ)

(c) zm(i) = λm−mj , mj ≤ m ≤ mj+1, ∀j is restart TD(λ)

The restart variant resets zm(i) at every new visit to i, hence
treats each trajectory between two visits as if they are separate.
It is observed that that restart variant outperforms the every-visit
variant.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 13 / 32

Q-Factors

Qµ(i, u) =

n∑
j=0

pij(u)(g(i, u, j) + Jµ(j))

Then policy improvement reads as

µ̄(i) = arg min
u∈U(i)

Qµ(i, u), i = 1, . . . , n.

Any µ may tend to explore region R more than the rest. Hence
Jµ(i) will have good quality if i ∈ R.
If µ drives i to R̄ with R̄ ∩R = ∅, then Jµ(i) will be poor for i ∈ R̄.
So decide the initial states well.
One solution is iterative resampling: Do not update µ if previous
simulation ends in i ∈ R̄. Simulate few times with different i ∈ R̄
using the old µ.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 14 / 32

Optimistic policy iteration
The actor uses µ for control and critic observes outcome to
compute Jµ.
In vanilla policy iteration, actor and critic communicate rarely, as it
takes multiple steps to solve policy evaluation while a single step
to do the policy update.
It is in fact possible to update the policy before policy evaluation
converges. This approach is called optimistic policy iteration.

repeat
for e = 1, . . . , E do ▷ Episodes

for k = 0, . . . , Ne − 1 do ▷ Policy evaluation
ik+1 ∼ Cat(p

µ(ik)
ik0

, . . . , p
µ(ik)
ikn

)
J(ik) := g(ik, µ(ik), ik+1) + αJ(ik+1)

end for
end for
Tµt+1J

µt := TJµt ▷ Policy improvement
until Jµt+1 = Jµt

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 15 / 32

When matrix inversion is infeasible

repeat
for e = 1, . . . , E do ▷ Episodes

for k = 0, . . . , Ne − 1 do ▷ Policy evaluation
ik+1 ∼ Cat(pik0(µ(ik)), . . . , pikn(µ(ik)))

J(ik) :=
∑n

j=1 pikj(µ(ik))
(
g(ik, µ(ik), j) + αJ(j)

)
end for

end for
Tµt+1J

µt := TJµt ▷ Policy improvement
until Jµt+1 = Jµt

This is a smart way of doing asynchronous updates, where the
computation cost of the value of a state is proportional to its probability
of occurrence.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 16 / 32

When even one pass over states is infeasible

repeat
for e = 1, . . . , E do ▷ Episodes

for k = 0, . . . , Ne − 1 do ▷ Policy evaluation
ik+1 ∼ Cat(pik0(µ(ik)), . . . , pikn(µ(ik)))
J(ik) := g(ik, µ(ik), ik+1) + αJ(ik+1)

end for
end for
Tµt+1J

µt := TJµt ▷ Policy improvement
until Jµt+1 = Jµt

Note that we actually do not need to know pij(µ(u)) if we are in a real
environment, as only taking action u(ik) would drive us to ik+1.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 17 / 32

Optimistic policy iteration with TD(λ)

repeat
for e = 1, . . . , E do ▷ Episodes

for k = 0, . . . , Ne − 1 do ▷ Policy evaluation
ik+1 ∼ Cat(pik0(µ(ik)), . . . , pikn(µ(ik)))
dk := g(ik, µ(ik), ik+1) + J(ik+1)− J(ik)
Mik := Mik ∪ k ▷ Save visit time

end for
for i = 0, . . . , n do ▷ Offline variant

J(i) := J(i) + γ
∑

mj∈Mi

∑Ne
m=mj

λm−mjdm
end for

end for
Tµt+1J

µt := TJµt ▷ Policy improvement
until Jµt+1 = Jµt

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 18 / 32

Optimism (and compute speed) at the extremes

repeat
for e = 1, . . . , E do ▷ Episodes

for k = 0, . . . , Ne − 1 do ▷ Policy evaluation
ik+1 ∼ Cat(pik0(µ(ik)), . . . , pikn(µ(ik)))
J(ik) := g(ik, µ(ik), ik+1) + αJ(ik+1)
Tµt+1J

µt := TJµt ▷ Policy improvement
end for

end for
until Jµt+1 = Jµt

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 19 / 32

Value iteration with ultimate optimism
In terms of Q-factors, Bellman equation is expressed as

Q∗(i, u) =

n∑
j=0

pij(u)(g(i, u, j) + J∗(j)), i = 1, . . . , n

=

n∑
j=0

pij(u)

(
g(i, u, j) + min

v∈U(i)
Q∗(i, v)

)

and value iteration as the update rule

Q(i, u):=

n∑
j=0

pij(u)

(
g(i, u, j) + min

v∈U(i)
Q(i, v)

)

and generally with step size γ ∈ (0, 1] as

Q(i, u) := (1− γ)Q(i, u) + γ

n∑
j=0

pij(u)

(
g(i, u, j) + min

v∈U(i)
Q(i, v)

)
.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 20 / 32

Q-Learning
Approximate optimistic value iteration by replacing the expectation on
next state with a single sample.

for e = 1, . . . , E do ▷ Episodes
for k = 0, . . . , Ne − 1 do ▷ Value iteration

ik+1 ∼ Cat(pik0(µ(ik)), . . . , pikn(µ(ik)))
Q(ik, µ(ik)) := (1− γ)Q(ik, µ(ik))

+γ
[
g(ik, u, ik+1) + minv∈U(i)Q(ik+1, v)

]
end for

end for

Here the behavior policy µ(i) can be chosen in multiple ways
i) ϵ−Greedy: P(µ(i) = u) = 1u=u∗

(
1− ϵ+ ϵ

|U(i)|

)
+ 1u̸=u∗ ϵ

|U(i)|
where u∗ = argminv∈U(i)Q(i, v). Greedy (also on-policy) if ϵ = 0,

ii) Temperature-scaled softmax: For temperature parameter T > 0

P(µ(i) = u) =
exp(−Q(i, u)/T)∑

v∈U(i) exp(−Q(i, v)/T)
.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 21 / 32

On-policy versus off-policy RL

Suppose the policy is greedy and the MDP is deterministic, then
the entire episode following i0 is determined. Nothing to average!
Remedy: Take random actions ⇒ Exploring Starts (ES).
When the policy is arbitrarily random, it is hard to target important
states in large state spaces.
Classify RL methods into two:

▶ On-policy methods generate data from the policy being learned.
▶ Off-policy methods use different policies for learning and data

generation.

On-policy methods use soft policies for exploration, i.e.
P(µ(i) = u) > 0, ∀i, u.
Off-policy methods trade exploration and exploitation.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 22 / 32

Off-policy methods

Solving RL requires solving two conflicting subtasks:
exploration: learn as many states as possible
exploitation: learn important states better

But how to know which state is more important without knowing the
optimal policy? Use two policies instead of one:

target policy: policy being learned (µ)
behavior policy: policy that generates behavior (b)

Because µ ̸= b, we call this approach off-policy RL.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 23 / 32

ϵ−greedy policy improvement theorem

Definition
Denote µ(u|i) = P(µ(i) = u). A policy µ is called ϵ−soft if
µ(u|i) ≥ ϵ

|U(i)| for all u ∈ U(i).

Theorem
For any ϵ−soft policy µ, the ϵ−greedy policy µ′ wrt Qµ is an
improvement, i.e. Jµ′ ≤ Jµ.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 24 / 32

Proof

Jµ′
(i) = Qµ(i, µ′(i)) =

∑
u

µ′(u|i)Qµ(i, u)

=
ϵ

|U(i)|
∑
u

Qµ(i, u) + (1− ϵ)min
u

Qµ(i, u)

≤ ϵ

|U(i)|
∑
u

Qµ(i, u) + (1− ϵ)
∑
u

µ(u|i)− ϵ
|U(i)|

1− ϵ︸ ︷︷ ︸
sums to 1

Qµ(i, u)

=
ϵ

|U(i)|
∑
u

Qµ(i, u) +
∑
u

µ(u|i) Qµ(i, u)−
∑
u

ϵ

|U(i)|
Qµ(i, u)

=
∑
u

µ(u|i)Qµ(i, u) = Jµ(i) ■

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 25 / 32

Importance Sampling (IS)
Intuition: Sample from a different distribution from the one being
integrated.

Ep(z)

[
f(z)

]
=
∑
z

f(z)p(z)

=
∑
u

f(z)
p(z)

q(z)
q(z)

then do Monte Carlo integration

Ep(z)

[
f(z)

]
≈ 1

N

N∑
k=1

f(z(k))× p(z(k))

q(z(k))︸ ︷︷ ︸
Importance weight

for a set of z(k) ∼ q(z).

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 26 / 32

IS applied to MC-RL
Assume i0, . . . , iN is the MC sequence used to update state i0 = i

z = (u0, . . . , uN−1)

f(z) =
∑N−1

k=0 g(ik, uk, ik+1)

p(z) =
∏N−1

k=0 µ(uk|ik)puk
ikik+1

q(z) =
∏N−1

k=0 b(uk|ik)puk
ikik+1

Then the importance weight is given as

w =

∏N−1
k=0 µ(uk|ik)

�
���puikik+1∏N−1

k=0 b(uk|ik)
��

��puikik+1

,

which does not depend on transition probabilities! Note that we require

µ(u|i) > 0 ⇒ b(u|i) > 0, ∀(i, u)

which is called the coverage assumption.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 27 / 32

Ordinary vs Weighted IS
Assume we sampled R sequences: urk ∼ b(u|irk), irk+1 ∼ p

ur
k

irki
r
k+1

∀k, r

u10,(i
1
2, u

1
1), . . . , (i

1
N , u1N) →

N−1∑
k=0

g(i1k, u
1
k, i

1
k+1) = C1

...
...

uR0 ,(i
R
2 , u

R
1), . . . , (i

R
N , uRN) →

N−1∑
k=0

g(iRk , u
R
k , i

R
k+1) = CR

Calculate an importance weight for each

wr =

N−1∏
k=0

µ(uk|irk)/b(uk|irk).

Then we can perform IS two ways
Ordinary IS: J(i) := 1

R

∑R
r=1wrCr

Weighted IS: J(i) :=
∑R

r=1

[(wr∑R
r=1wr

)
Cr

]
M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 28 / 32

Ordinary vs Weighted IS

Ordinary IS is unbiased, but its variance is unbounded (due to the
importance weight). Problematic for loopy trajectories.
Weighted IS is biased, but its variance is bounded.
Weighted IS is preferred more often.
Bias of Weighted IS converges to zero. Hence, it is asymptotically
unbiased.
Ordinary IS has poor convergence properties.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 29 / 32

Incremental IS
Given a set of sequences with corresponding observed costs
C1, C2, · · · , CN , all starting with the same state and having the
corresponding importance weights w1, w2, · · · , wN , we can do the
online update for ordinary IS as

J(i) := J(i) +
1

r

[
wkCr − J(i)

]
,

and for weighted IS as follows. Define βr = βr−1 + wr with β0 = 0,

βrJr(i) =Crwr + βr−1Jr−1(i)

=Crwr + (βr − wr)Jr−1(i)

=Crwr + βrJr−1(i)− wrJr−1(i)

∴ J(i) =
Crwr + βrJr−1(i)− wrJr−1(i)

βr

∴ J(i) :=J(i) +
wr

βr

[
Cr − Jr−1(i)

]
M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 30 / 32

Off-policy MC control

Initialize for all i ∈ S, u ∈ U :
Q(i, u) := arbitrary, β(i, u) := 0, µ(i) := argminuQ(i, u)

repeat forever
b := any soft policy
Sample episode {(uk, ik+1)|uk ∼ b(u|ik), ik+1 ∼ puk

ikik+1
}

C := 0, w := 1
for k := N − 1 → 0:

C := C + g(ik, uk, ik+1)
β(ik, uk) := β(ik, uk) + w
Q(ik, uk) := Q(ik, uk) +

w
β(ik,uk)

[C −Q(ik, uk)]

u∗ := argminu Q(ik, u)
if uk ̸= u∗ then break
w := w(1/b(uk|ik))

end for

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 31 / 32

Pros and cons of off-policy RL

Off-policy methods incur higher variance, hence converge slower
than on-policy methods.
Off-policy methods have on-policy methods as their special case,
hence they are more general and powerful.
Off-policy methods can learn from a non-learning controller (e.g. a
human expert), on-policy methods cannot.

M. Kandemir (SDU) 5- Value-based Simulation Fall 2022 32 / 32

