6- Approximate TD Methods

Melih Kandemir

University of Southern Denmark
Department of Mathematics and Computer Science (IMADA)
kandemir@imada.sdu.dk

Fall 2022

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022

RL in large and/or continuous state spaces

What if
@ the state space is too large to allocate memory for every state?

@ or, the state description is very high-dimensional (e.g. a Go table,
or the scene image)?

A solution approach:

@ Project states to a feature space ¢(i). Do feature extraction, use
kernels, learn an embedding separately or end-to-end, i.e. as
part of the RL algorithm.

@ Represent cost-to-go as a parametric function, for instance a
neural network, that is

Ji (i) = wy o (W] ¢(i))

where 0 = {W;,wy} and o is an activation function (e.g. ReLU).

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 2/31

Value-based RL as a supervised learning problem

Given a sample (i, ug, ig+1), Solve

2

arg min <g(ik,, U, ikg1) + oy (ikg1) — Jh (in)
0 ——

target prediction

Since 6 describe the cost-to-go of all possible states, unlike the tabular
approach, updating parameters for a single state affects the values of
many other states!

We bootstrap if J)) is used both in prediction and target calculation.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 3/31

MC versus TD on a single episode

Reorganize the sampled episode ig, ug, i1, u1,...,iNn—1,un—1,iny = 0
as {(io, uo, 1), (i1, u1,%2), ..., (in-1,un—1,0)}, generate a labeled data
set and do gradient-descent

® MC: D = {(io, >, glin, ur,iri1))}

N—1
0:=0-~ [Z gk, g, ipy1) — J§ (i0) | VoJy (o)
k=0

e TD(0):

(i07 (](70* UuQ, 51) + (Y«]élr(/l.q))
(i1, g(i1, w1, i2) + aJ) (i2))

(in-1,9(iN-1,uN-1,0))

0:= 0 = | glin, ups ins1) + 0 (in 1) = Jf (in) | o Tf i),
k=0,...,N—1

M. Kandemir (SDU) 6- Approximate TD Methods

MC versus TD

@ TD can learn before the final outcome is observed

» TD learns online from every state transition
» MC has to wait the episode end to calculate the return

@ TD can learn without the final outcome
» TD can learn from incomplete sequences (i.e. works in continuing
environments)
» MC can only learn from complete sequences (i.e. works only in
episodic environments)
@ TD exploits Markov property, MC does not

» TD works better if the environment is Markov
» MC can better handle non-stationarity

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 5/31

Unified view of RL algorithms

Exhaustive
search

Dynamic
programming

full l
backups
sample y Monte Carlo
backups Temporal-
difference
learning
shallow bootstrapping, A geep *
backups backups i

Figure. D. Silver, lecture slides

6- Approximate TD Methods

M. Kandemir (SDU)

Linear value approximation
Assume J}' (i) = ¢(i)T6 where § € R, then
- N\T 2
argmmZ(G(ig, wp, ipr1) + ad(ipe1)T 0 — d(ig) 0)

Denote g(ix, uk, ix+1) := gr, treat ¢(ir.1)’ 0 as a constant target, set
the gradient of the loss to zero, reorganize, and solve

Nk

(90(ik) — 0(i) (6 (ix) — a6(i5.1)) 0] =0

b
Il
o

0o 1
= [qu(mwk) - a¢<ik+1>>T] > 9k (ir)
k=0

k=0

M. Kandemir (SDU) 6- Approximate TD Methods

Fall 2022 7/31

Online updates

Define the solution for time step k as
k
A = Z Sim)(B(im) — a@(imi1)", be =3 gm®(im)
m=0

Use Sherman-Morrison formula to incrementally update Ak+1'

-1
Apty = Ak + 0ia) (8(0r) — ad(ins1)|
_ Al A k) (9 (i) — ag(int))" Ay

P 1 (@) — adline)TAL Y lin)

Remark that the ordering of the matrix product in the denominator is
important as A,;l may not be symmetric.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 8/31

Least Squares Temporal Differences (LSTD)
algorithm

Al = =0
repeat
choose random i
repeat
act u ~ u(i), observe ¢/, calculate g(i,u, i)
v = (¢(i) — ag(i'))TA™!
A= AT - A>T /(1 + v (i)
b:=b+ g(i,u,i)p(i)
i=1
until ; :=0
until convergence
return J* := A~ 1p

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022

9/31

Stochastic Gradient Descent (SGD)
One update requires a full pass on the entire data set
N—-1

0:=0—v|> glin,up,ins1) — Jj (i0) | VoJ} (i)
k=0

true gradient
This
@ is expensive if the data set is large.
@ delays model fit.
Choose a random k and collect minibatch of size N

D= {(Fktms UWktm, tktma1)m =0, ... N — 1}
and update
N N-1
0:=0—v ~ ;}g(ik+m’uk+m7ik+m+1) — J(i0) | Vo Iy (i0)

stochastic gradient

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 10/31

Robbins-Monro Theorem (1951)

The stochastic gradient provides an unbiased estimator of the true
gradient if updates are performed following a learning rate series
satisfying the two properties below

€ = 00

Nk

; (1)

o+
Il

1

K
Do
A
1

™

t=1

(1) reach at points arbitrarily far away
(2) stop learning at some point

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 11/31

SGD with and without replacement

@ without replacement:
» choose a sample only once until all samples are chosen, i.e. until
an epoch is complete.
» more common in standard ML due mainly to practical reasons, e.g.
to decide whether the epoch is over.
@ with replacement:
keep random sampling without caring about coverage.
allow multiple selection of a sample within an epoch.
more common in RL.
called experience replay.

v

vvyy

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 12/31

Semi-gradient 7'D(0)

repeat
choose (random) 4
repeat
act u ~ u(i), observe ¢/, calculate g(i, u, ")
0:= 0= |gli,u, i) + o} () = T (3)| Vot (i)
until i :=0
until convergence
return J/'(-)

Gradient-descept step does bootstrapping. This breaks the
Robbins-Monro assumptions, i.e. introduces estimator bias and
doesn’t ensure convergence.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022

13/31

Semi-gradient off-policy control: Deep Q-learning

Define a parametric Q-factor Qg (u;i) = Wi o(Wi ¢(i))) where W, is a
matrix with one output dimension per control.

D:=0 > Init replay buffer
repeat
choose (random) 4 > Episode start
repeat
act u ~ softmax(—Qp(+; 7)), observe ¢/, g; := g(i,u,7’)
D :=DU (i,u,g;i), DD > Sample minibatch
0:=6— % > i [gi + amin, Qy(v;i") — Qg(u; 1) | VeQo(u;1)
i:=1q
until ; :=0

until convergence
return Qy(+;-)

Replay buffer is a queue: |D| > 7 = D\ (40, u, go, i1) for memory size 7.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 14/31

Semi-gradient on-policy control: Deep Sarsa
On-policy: The policy used for taking actions and the policy used for
the Bellman backup are the same.

D:=0 > Init replay buffer
repeat
choose (random) ¢ > Episode start
repeat

act u ~ softmax(—Qy(+;4)), observe ¢/, g; := g(i,u, ')
u' ~ softmax(—Qp(+;1))
D:=DU (4,u,g;,1,u), D% p > Sample minibatch

0:=0— 2 Yiep 9+ aQo(u's) — Qolwi)] VoQo(us)
i:=1
until ; :=0

until convergence
return Qy(-;-)

High variance. Requires v << 1.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 15/31

Deep Expected Sarsa

D:=0 > Init replay buffer
repeat
choose (random) ¢ > Episode start
repeat

u(-1i) := softmax(~Qy(-; i)
act u ~ u(-|i), observe i, calculate g; := g(i,u, i)
~ iid

D:=DuU (i,u,g;,1), D ~D > Sample minibatch

0:=0- ﬁ i€D [gi + aZ’UEU(i) p(v|i")Qo(v; ')

—Qo(u; i)] VoQo(u; 1)
i:=1q
until ; := 0
until convergence
return Qy(-;-)

Less variance, but more computation cost. No longer requires o << 1.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 16/31

Convexity

Consider a parametric line aX + b(1 — \) that passes between points a
and b and an arbitrary function f(z). If any line passing between f(a)
and f(b) is always above f(x), then f(z) is called a convex function.
More formally, if for any a and b the below inequality satisfies

@A+ f(b)(1 = A) = flar+b(1 = A)),

then f(x) is said to be convex.

Figure: C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

M. Kandemir (SDU)

6- Approximate TD Methods Fall 2022 17/31

Jensen’s inequality
We can prove by induction that convexity holds also for more than two
points:

M M
f (>)\iﬂci) <> Aif (@),
i=1 i=1

such that {z1,--- ,za/} is a set of points on the function domain and
Zf‘il Ai = 1 with \; > 0. We can think of {\;,---, Ay} as parameters
of a categorical distribution with M states. Hence we can have

f(E[z]) <E[f(z)].

The difference E[f(z)] — f(E[x]) is called the Jensen gap. This
outcome generalizes to continuous variables straightforwardly (use
Riemann integration):

[s> £([eptajar).

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 18/31

Minimization bias in Q-learning

Let us re-develop the Bellman equation paying attention to the order of
the expectations

Qo(u;i) = Epu, [g;] + VEpu, [Ey, 1) [Qa(v;)]
E

since p is a deterministic greedy policy. Q-learning calculates the TD
error evaluating min, Qg (v;4") with i’ sampled before the min operator.
Assume this process is repeated K times z"(l), .. then

, " (K)
asymptotically we have

1 o
Jm min - Q(ify), v) = Epy, [min Qo (7', v)]

minEyu [Qo(i,v)]

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 19/31

Minimization bias and double learning

@ Many RL algorithms use E[min(a, b)] to approximate
min(E[a], E[b]), such as in the target calculation of Q-learning, in
e—greedy calculation of Sarsa, etc.

@ However, min operator is concave, hence due to Jensen’s
inequality, we have

min(E[a], E[b]) > E[min(a,b)],

which causes underestimation of the cost-to-go.

@ The systematic error E[min(a, b)] — min(E[a], E[b]) resulting from
this approximation is called the minimization bias.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 20/31

Double learning

@ The minimization bias problem emerges from using the same
samples both to determine the minimizing action and to estimate
its value.

@ A solution is to use one Q-factor to determine the maximizing
action and another one to estimate its value

Qp. (arg min Q;; (v;d'); i/> .
v z

@ The outcome is an unbiased estimate of the value of the
maximizing action.

@ The trick can be used anywhere: Q-learning, Sarsa, Expected
Sarsa, etc.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 21/31

The double deep Q-learning (DDQL) algorithm

D:=0 > Init replay buffer
repeat
choose (random) 4 > Episode start
repeat

p(-[4) := softmax(—(Qp, (-+9) + Qg, (19))/2)

act u ~ u(uli), observe i, calculate g; := g(i,u, i)

D:=DuU (i,u,g;,1), D% p > Sample minibatch
z ~ Bernoulli(0.5), Zi=1-2

0,:=0, — ‘%‘ Y ich |9 + aQf (arg min, Qé; (v;8');4")

—Qp(us i) | VoQg (us 7)
=1
until : :=0
until convergence
return Q4 (-;-)

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 22/31

Example: Mountain Car

@ Drive a car out of a U-shaped valley.
@ Gravity is stronger than the car’s engine.
@ Reward: —1 per time step, +100 for reaching the goal.

@ Actions:

» +1 full throttle forward,
» —1 full throttle backwards,
» 0 zero throttle.

@ The system dynamics are as below

digy1

dt
di di
Zg;rl — % + 0.001uy — 0.025co0s(3iy),

Th+1 i= Uk +

where i, denotes the position and dj—f the velocity of the car.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022

23/31

Example: Mountain Car

MOUNTAIN CAR Goal

n'sus,'\ i

liop .

Figure: R. Sutton, A. Barto, MIT Press, 2017

demir (SDU) 6- Approximate TD Methods

Example: Mountain Car

@ Mountain car is a standard application for delayed reward: Driving
towards the exit point is not the right way.

@ Step 428 has a symmetric shape, because all initially visited
states are valued worse than the default value unexplored states.

@ Consequently, the agent decides to explore for long episodes even
though € = 0.

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 25/31

N —step semi-gradient Sarsa on Mountain Car

1000

Mountain Car 4
Steps per episode

log scale
averaged over 100 runs 200

100,

Episode

Figure: R. Sutton, A. Barto, MIT Press, 2017

M. Kandemir (SDU) 6- Approximate TD Methods

N-step Deep Q-Learning (DQL)

D=1 > Init replay buffer
repeat
choose (random) ¢ > Episode start
repeat
gl‘i\‘r =0

for do n=0,...,N —1
act v ~ softmax(—Qp(+; 7))
ifn=0theniy:= i, u:=v > Save first state/action
observe 7, calculate ¢ := ¢V + g(i,v, 1)
i:=1q
end for -
D :=DU (ig,u, g, 1), D% p > Sample minibatch

0:=0-F>ch [g{v + oY min, Qg (v; i) — Qo (u; i)] VQo(u;1)
until i :=0
until convergence

return Qy(+;-)

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 27/31

Attention Networks

@ Episodic memory: Timestamped storage of experience in the
hippocampus. Prominence is proportional to arousal.

@ Idea is to build an artificial hippocampus to protect key events
from the catastrophic interference of gradient-descent.

@ Maintain a memory M = {(h1,V1),...,(hgr,Vg)}, called a
Differential Neural Dictionary (DND), consisting of key-value
pairs (h;,V;). Key h; is the address and value V; is the content of
a memory element j.

@ For a state i, value retrieval from memory takes place as follows
procedure attend (i, M)

h = ey (i) > Generate key

wj = k(h, hy) /Z Lk(h,hy),¥j=1,...,R > Compute attention

return V(i) := 210w,V (j)

for a given similarity score, e.g. k(h,h’) := (h,h")/(||R]| - ||F'|])-

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 28/31

Semi-tabular TD: Neural Episodic Control
hi Qi

Figure: https://arxiv.org/abs/1703.01988

@ Values retrieved from the memory can be updated much faster
than DQL.

@ Fast approximate nearest-neighbor search on the large memory
via KD-tree algo

@ Aims to achieve essential properties of hippocampus: Long-term
memory (DND), sequentiality (N-step), context look-up (attention)

@ N-step Q-learning is better for fast reward propagation.

@ Non-parametric methods are essential for data efficiency.

@ Choose V(i) = Q(u; e} (i')).

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 29/31

https://arxiv.org/abs/1703.01988

The NEC algorithm

D:=0,M,:=0NuecU > Init replay buffer and memory
repeat
giN =0

for do n=0,...,N—1
act v ~ softmax(—Q(+;1))
ifn=0theniy =i, u:=v
observe ', calculate g := gV + g(i, v, ')
=1
end for
GY .= gV + o¥ min, attend (i, M,) > Bellman target
if maxpens, k(ey (i), h) < 7 then M, := M, U (e, (i), GY)
D:=DU (ip,u,GN,i#), DD
Q(w; 5) == Q(u; 7) + yw;(GY — Q(u; 7)), Vj > Tabular update
b= = & Vi [GF - Qui el (1)] Vu@(u; (1)
until convergence

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 30/31

hverage Score per Episode

NEC Results

5000 HER.O,

Algorithm
ooN

0 Lambda
20000 face
Prioritised Replay
a3C

15000 e

10000

5000

15 0 25 £ E 0
Millions of Frames.

Figure 5. Learning curve on HE.R.O.

s000 Ms. Pac-Man
Algorithm
ooN

5000 9 tambda
Retrace

Prioritised Replay
4000 A3c

NEC
MFEC

3000

2000

Average Score per Episode

1000

2 0 E a0

15 0
Millions of Frames

Average Score per Episode

Average Score per Episode

Alien

Algorithm

oan
5000 0 Lambda

Retrace.
Prioritised Replay
a3c

NEC
MFEC

2000

1000

15 0 25 £ E 0
Millions of Frames.

Figure 7. Learning curve on Alien.

-2

0
Millions of Frames

Figure: https://arxiv.org/abs/1703.01988

6- Approximate

Methods

https://arxiv.org/abs/1703.01988

