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RL in large and/or continuous state spaces

What if
the state space is too large to allocate memory for every state?
or, the state description is very high-dimensional (e.g. a Go table,
or the scene image)?

A solution approach:
Project states to a feature space ϕ(i). Do feature extraction, use
kernels, learn an embedding separately or end-to-end, i.e. as
part of the RL algorithm.
Represent cost-to-go as a parametric function, for instance a
neural network, that is

Jπθ (i) = wT2 σ(W
T
1 ϕ(i))

where θ = {W1, w2} and σ is an activation function (e.g. ReLU).
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Value-based RL as a supervised learning problem

Given a sample (ik, uk, ik+1), solve

argmin
θ

(
g(ik, uk, ik+1) + αJµθ (ik+1)︸ ︷︷ ︸

target

− Jµθ (ik)︸ ︷︷ ︸
prediction

)2

Since θ describe the cost-to-go of all possible states, unlike the tabular
approach, updating parameters for a single state affects the values of
many other states!
We bootstrap if Jµθ is used both in prediction and target calculation.
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MC versus TD on a single episode
Reorganize the sampled episode i0, u0, i1, u1, . . . , iN−1, uN−1, iN = 0
as {(i0, u0, i1), (i1, u1, i2), . . . , (iN−1, uN−1, 0)}, generate a labeled data
set and do gradient-descent

MC: D = {(i0,
∑N−1

k=0 g(ik, uk, ik+1))}

θ := θ − γ

[
N−1∑
k=0

g(ik, uk, ik+1)− Jµθ (i0)

]
∇θJ

µ
θ (i0)

TD(0):

D =


(i0, g(i0, u0, i1) + αJµθ (i1))
(i1, g(i1, u1, i2) + αJµθ (i2))

...
(iN−1, g(iN−1, uN−1, 0))


θ := θ − γ

[
g(ik, uk, ik+1) + αJµθ (ik+1)−Jµθ (ik)

]
∇θJ

µ
θ (ik),

k = 0, . . . , N − 1
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MC versus TD

TD can learn before the final outcome is observed
▶ TD learns online from every state transition
▶ MC has to wait the episode end to calculate the return

TD can learn without the final outcome
▶ TD can learn from incomplete sequences (i.e. works in continuing

environments)
▶ MC can only learn from complete sequences (i.e. works only in

episodic environments)
TD exploits Markov property, MC does not

▶ TD works better if the environment is Markov
▶ MC can better handle non-stationarity
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Unified view of RL algorithms

Figure. D. Silver, lecture slides
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Linear value approximation

Assume Jµθ (i) = ϕ(i)T θ where θ ∈ Rd, then

argmin
θ

∞∑
k=0

(
g(ik, uk, ik+1) + αϕ(ik+1)

T θ − ϕ(ik)
T θ
)2

Denote g(ik, uk, ik+1) := gk, treat ϕ(ik+1)
T θ as a constant target, set

the gradient of the loss to zero, reorganize, and solve

∞∑
k=0

[
gkϕ(ik)− ϕ(ik)(ϕ(ik)− αϕ(ik+1))

T θ
]
= 0

∴ θ =

[ ∞∑
k=0

ϕ(ik)(ϕ(ik)− αϕ(ik+1))
T

]−1 ∞∑
k=0

gkϕ(ik)

M. Kandemir (SDU) 6- Approximate TD Methods Fall 2022 7 / 31



Online updates

Define the solution for time step k as

Ak =

k∑
m=0

ϕ(im)(ϕ(im)− αϕ(im+1))
T , bk =

k∑
m=0

gmϕ(im)

Use Sherman-Morrison formula to incrementally update A−1
k+1:

A−1
k+1 =

[
Ak + ϕ(ik)(ϕ(ik)− αϕ(ik+1))

T
]−1

= A−1
k −

A−1
k ϕ(ik)(ϕ(ik)− αϕ(ik+1))

TA−1
k

1 + (ϕ(ik)− αϕ(ik+1))TA
−1
k ϕ(ik)

.

Remark that the ordering of the matrix product in the denominator is
important as A−1

k may not be symmetric.
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Least Squares Temporal Differences (LSTD)
algorithm

A−1 := ϵ−1I, b := 0
repeat

choose random i
repeat

act u ∼ µ(i), observe i′, calculate g(i, u, i′)
v := (ϕ(i)− αϕ(i′))TA−1

A−1 := A−1 −A−1ϕ(i)vT /(1 + vϕ(i))
b := b+ g(i, u, i′)ϕ(i)
i := i′

until i := 0
until convergence
return Jµ := A−1b
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Stochastic Gradient Descent (SGD)
One update requires a full pass on the entire data set

θ := θ − γ

[
N−1∑
k=0

g(ik, uk, ik+1)− Jµθ (i0)

]
∇θJ

µ
θ (i0)︸ ︷︷ ︸

true gradient

This
is expensive if the data set is large.
delays model fit.

Choose a random k and collect minibatch of size Ñ

D̃ = {(ik+m, uk+m, ik+m+1)|m = 0, . . . , Ñ − 1}

and update

θ := θ − γ

[
N

Ñ

Ñ−1∑
k=0

g(ik+m, uk+m, ik+m+1)− Jµθ (i0)

]
∇θJ

µ
θ (i0)︸ ︷︷ ︸

stochastic gradient
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Robbins-Monro Theorem (1951)

The stochastic gradient provides an unbiased estimator of the true
gradient if updates are performed following a learning rate series
satisfying the two properties below

∞∑
t=1

ϵt = ∞, (1)

∞∑
t=1

ϵ2t <∞. (2)

(1) reach at points arbitrarily far away
(2) stop learning at some point
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SGD with and without replacement

without replacement:
▶ choose a sample only once until all samples are chosen, i.e. until

an epoch is complete.
▶ more common in standard ML due mainly to practical reasons, e.g.

to decide whether the epoch is over.
with replacement:

▶ keep random sampling without caring about coverage.
▶ allow multiple selection of a sample within an epoch.
▶ more common in RL.
▶ called experience replay.
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Semi-gradient TD(0)

repeat
choose (random) i
repeat

act u ∼ µ(i), observe i′, calculate g(i, u, i′)
θ := θ − γ

[
g(i, u, i′) + αJµθ (i

′)− Jµθ (i)
]
∇θJ

µ
θ (i)

until i := 0
until convergence
return Jµθ (·)

Gradient-descept step does bootstrapping. This breaks the
Robbins-Monro assumptions, i.e. introduces estimator bias and
doesn’t ensure convergence.
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Semi-gradient off-policy control: Deep Q-learning
Define a parametric Q-factor Qθ(u; i) =W T

2 σ(W
T
1 ϕ(i))) where W2 is a

matrix with one output dimension per control.

D := ∅ ▷ Init replay buffer
repeat

choose (random) i ▷ Episode start
repeat

act u ∼ softmax(−Qθ(·; i)), observe i′, gi := g(i, u, i′)

D := D ∪ (i, u, gi, i
′), D̃ iid∼ D ▷ Sample minibatch

θ := θ − γ

|D̃|

∑
i∈D̃

[
gi + αminv Qθ(v; i

′)−Qθ(u; i)
]
∇θQθ(u; i)

i := i′

until i := 0
until convergence
return Qθ(·; ·)

Replay buffer is a queue: |D| > τ ⇒ D\(i0, u, g0, i1) for memory size τ .
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Semi-gradient on-policy control: Deep Sarsa
On-policy: The policy used for taking actions and the policy used for
the Bellman backup are the same.

D := ∅ ▷ Init replay buffer
repeat

choose (random) i ▷ Episode start
repeat

act u ∼ softmax(−Qθ(·; i)), observe i′, gi := g(i, u, i′)
u′ ∼ softmax(−Qθ(·; i′))
D := D ∪ (i, u, gi, i

′, u′), D̃ iid∼ D ▷ Sample minibatch
θ := θ − γ

|D̃|

∑
i∈D̃

[
gi + αQθ(u

′; i′)−Qθ(u; i)
]
∇θQθ(u; i)

i := i′

until i := 0
until convergence
return Qθ(·; ·)

High variance. Requires γ << 1.
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Deep Expected Sarsa

D := ∅ ▷ Init replay buffer
repeat

choose (random) i ▷ Episode start
repeat

µ(·|i) := softmax(−Qθ(·; i))
act u ∼ µ(·|i), observe i′, calculate gi := g(i, u, i′)

D := D ∪ (i, u, gi, i
′), D̃ iid∼ D ▷ Sample minibatch

θ := θ − γ

|D̃|

∑
i∈D̃

[
gi + α

∑
v∈U(i) µ(v|i′)Qθ(v; i′)

−Qθ(u; i)
]
∇θQθ(u; i)

i := i′

until i := 0
until convergence
return Qθ(·; ·)

Less variance, but more computation cost. No longer requires α << 1.
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Convexity
Consider a parametric line aλ+ b(1− λ) that passes between points a
and b and an arbitrary function f(x). If any line passing between f(a)
and f(b) is always above f(x), then f(x) is called a convex function.
More formally, if for any a and b the below inequality satisfies

f(a)λ+ f(b)(1− λ) ≥ f(aλ+ b(1− λ)),

then f(x) is said to be convex.

Figure: C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
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Jensen’s inequality
We can prove by induction that convexity holds also for more than two
points:

f

(
M∑
i=1

λixi

)
≤

M∑
i=1

λif(xi),

such that {x1, · · · , xM} is a set of points on the function domain and∑M
i=1 λi = 1 with λi ≥ 0. We can think of {λi, · · · , λM} as parameters

of a categorical distribution with M states. Hence we can have

f(E[x]) ≤ E[f(x)].

The difference E[f(x)]− f(E[x]) is called the Jensen gap. This
outcome generalizes to continuous variables straightforwardly (use
Riemann integration):∫

f(x)p(x)dx ≥ f
(∫

xp(x)dx
)
.
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Minimization bias in Q-learning

Let us re-develop the Bellman equation paying attention to the order of
the expectations

Qθ(u; i) = Epu
ii′
[gi] + γEpu

ii′
[Eµ(v|i′)[Qθ(v; i′)]]

= Epu
ii′
[gi] + γEpu

ii′
[min
v
Qθ(v; i

′)]

since µ is a deterministic greedy policy. Q-learning calculates the TD
error evaluating minv Qθ(v; i

′) with i′ sampled before the min operator.
Assume this process is repeated K times i′(1), . . . , i

′
(K), then

asymptotically we have

lim
K→+∞

min
v

1

K
Qθ(i

′
(k), v) = Epu

ii′
[min
v
Qθ(i

′, v)]

̸= min
v

Epu
ii′
[Qθ(i

′, v)].
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Minimization bias and double learning

Many RL algorithms use E[min(a, b)] to approximate
min(E[a],E[b]), such as in the target calculation of Q-learning, in
ϵ−greedy calculation of Sarsa, etc.
However, min operator is concave, hence due to Jensen’s
inequality, we have

min(E[a],E[b]) ≥ E[min(a, b)],

which causes underestimation of the cost-to-go.
The systematic error E[min(a, b)]−min(E[a],E[b]) resulting from
this approximation is called the minimization bias.
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Double learning

The minimization bias problem emerges from using the same
samples both to determine the minimizing action and to estimate
its value.
A solution is to use one Q-factor to determine the maximizing
action and another one to estimate its value

Qzθz

(
argmin

v
Qz

′
θ′z
(v; i′); i′

)
.

The outcome is an unbiased estimate of the value of the
maximizing action.
The trick can be used anywhere: Q-learning, Sarsa, Expected
Sarsa, etc.
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The double deep Q-learning (DDQL) algorithm

D := ∅ ▷ Init replay buffer
repeat

choose (random) i ▷ Episode start
repeat

µ(·|i) := softmax(−(Q0
θ0
(·; i) +Q1

θ1
(·; i))/2)

act u ∼ µ(u|i), observe i′, calculate gi := g(i, u, i′)

D := D ∪ (i, u, gi, i
′), D̃ iid∼ D ▷ Sample minibatch

z ∼ Bernoulli(0.5), z′ := 1− z

θz := θz − γ

|D̃|

∑
i∈D̃

[
gi + αQzθz(argminv Q

z′
θ′z
(v; s′); i′)

−Qzθ(u; i)
]
∇θQ

z
θ(u; i)

i := i′

until i := 0
until convergence
return Qµθ (·; ·)
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Example: Mountain Car

Drive a car out of a U-shaped valley.
Gravity is stronger than the car’s engine.
Reward: −1 per time step, +100 for reaching the goal.
Actions:

▶ +1 full throttle forward,
▶ −1 full throttle backwards,
▶ 0 zero throttle.

The system dynamics are as below

ik+1 := ik +
dik+1

dt
dik+1

dt
:=

dik
dt

+ 0.001uk − 0.025cos(3ik),

where ik denotes the position and dik
dt the velocity of the car.
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Example: Mountain Car

Figure: R. Sutton, A. Barto, MIT Press, 2017
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Example: Mountain Car

Mountain car is a standard application for delayed reward: Driving
towards the exit point is not the right way.
Step 428 has a symmetric shape, because all initially visited
states are valued worse than the default value unexplored states.
Consequently, the agent decides to explore for long episodes even
though ϵ = 0.
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N−step semi-gradient Sarsa on Mountain Car

Figure: R. Sutton, A. Barto, MIT Press, 2017
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N -step Deep Q-Learning (DQL)
D := ∅ ▷ Init replay buffer
repeat

choose (random) i ▷ Episode start
repeat

gNi := 0
for do n = 0, . . . , N − 1

act v ∼ softmax(−Qθ(·; i))
if n = 0 then i0 := i, u := v ▷ Save first state/action
observe i′, calculate gNi := gNi + g(i, v, i′)
i := i′

end for
D := D ∪ (i0, u, g

N
i , i

′), D̃ iid∼ D ▷ Sample minibatch
θ := θ− γ

|D̃|

∑
i∈D̃

[
gNi +αN minv Qθ(v; i

′)−Qθ(u; i)
]
∇Qθ(u; i)

until i := 0
until convergence
return Qθ(·; ·)
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Attention Networks
Episodic memory: Timestamped storage of experience in the
hippocampus. Prominence is proportional to arousal.
Idea is to build an artificial hippocampus to protect key events
from the catastrophic interference of gradient-descent.
Maintain a memory M = {(h1, V1), . . . , (hR, VR)}, called a
Differential Neural Dictionary (DND), consisting of key-value
pairs (hj , Vj). Key hj is the address and value Vj is the content of
a memory element j.
For a state i, value retrieval from memory takes place as follows

procedure attend(i,M)
h := eψ(i) ▷ Generate key
wj := k(h, hj)

/∑R
j′=1 k(h, hj′), ∀j = 1, . . . , R ▷ Compute attention

return V (i) :=
∑R

j=1wjV (j)

for a given similarity score, e.g. k(h, h′) := ⟨h, h′⟩/(||h|| · ||h′||).
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Semi-tabular TD: Neural Episodic Control

Figure: https://arxiv.org/abs/1703.01988

Values retrieved from the memory can be updated much faster
than DQL.
Fast approximate nearest-neighbor search on the large memory
via KD-tree algo
Aims to achieve essential properties of hippocampus: Long-term
memory (DND), sequentiality (N-step), context look-up (attention)
N-step Q-learning is better for fast reward propagation.
Non-parametric methods are essential for data efficiency.
Choose Vu(i) = Q(u; euψ(i

′)).
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The NEC algorithm

D := ∅,Mu := ∅,∀u ∈ U ▷ Init replay buffer and memory
repeat

gNi := 0
for do n = 0, . . . , N − 1

act v ∼ softmax(−Q(·; i))
if n = 0 then i0 = i, u := v
observe i′, calculate gNi := gNi + g(i, v, i′)
i := i′

end for
GNu := gNi + αN minv attend(i′,Mv) ▷ Bellman target
if maxh∈Mu k(eψ(i), h) < τ then Mu :=Mu ∪ (eψ(i), G

N
u )

D := D ∪ (i0, u,G
N
u , i

′), D̃ iid∼ D
Q(u; j) := Q(u; j) + γwj(G

N
u −Q(u; j)),∀j ▷ Tabular update

ψ := ψ − κ

|D̃|

∑
i∈D̃

[
GNu −Q(u; euψ(i))

]
∇ψQ(u; euψ(i))

until convergence
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NEC Results

Figure: https://arxiv.org/abs/1703.01988
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