
7- Policy Gradient Methods
Melih Kandemir

University of Southern Denmark
Department of Mathematics and Computer Science (IMADA)

kandemir@imada.sdu.dk

Fall 2022

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 1 / 42

Policy-based RL

We have thus far attempted to solve the reinforcement learning
problems by designing algorithms that update value functions and
use them to derive policies.
There exist an alternative vein in reinforcement learning that
suggests modeling the policy distribution straight ahead and fitting
its parameters to observations.
Let us this time choose a policy distribution µθ(u|i) with
parameters θ. Our goal is to minimize the cost-to-go of a state i
with respect to policy parameters θ

θ∗ = argmin
θ

Jπθ(i). (1)

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 2 / 42

Advantages of policy-based methods

Facilitate modeling continuous action spaces.
Ability to express any action distribution other than ϵ−greedy.
A small change in the value function parameters could make a
previously unlikely action the most likely one. Contrarily, the action
probabilities of a policy-based method could be updated
proportional to a desired learning rate.
Usually easier to study the convergence properties of
policy-based methods than value-based methods.
Domain knowledge about a target environment is often available
in the form of a policy distribution, such as the behavior patterns
of a human driver.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 3 / 42

Discriminative versus generative models
Consider the supervised learning problem on a data distribution
(x, y) ∼ p(x, y) where x are input observations and y are labels. Given
a data set D = {(xi, yi)|(xi, yi) ∼ p(x, y),∀i = 1, . . . , N}

a generative model uses factorization p(y)p(x|y) and learns both:
argmaxϕ,θ

1
N

∑N
i=1 pϕ(yi)pθ(xi|yi). Value-based methods learn

p(µ)p(J |µ), hence they try to explain the cost generation process.
a discriminative model uses the factorization p(x)p(y|x),
integrates out the first one Ep(x)[p(y|x)] ≈ 1

N

∑N
i=1 p(yi|xi) and

learns only the second, i.e. only the label predictor

argmax
θ

1

N

N∑
i=1

pθ(yi|xi).

Policy-based methods learn p(µ|J) by doing

EJ∼p(J)[p(µ|J)] ≈
1

N

N∑
m=1

p(µ|Jm)⇒ argmax
θ

1

N

N∑
m=1

pθ(µ|Jm)

where Jm are cost-to-go values observed from MC samples.
M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 4 / 42

The policy-gradient theorem

∇θJθ(i) = ∇θ
∫
µθ(u|i)Qθ(i, u)du

=

∫
∇θµθ(u|i)Qθ(i, u)du+

∫
µθ(u|i)∇θQθ(i, u)du

=

∫
∇θµθ(u|i)Qθ(i, u)du

+

∫
µθ(u|i)∇θ

{∫
puii′

[
gi +

∫
µθ(u

′|i′)Qθ(i′, u′)du′
]
di′

}
du

=

∫
∇θµθ(u|i)Qθ(i, u)du+

∫
µθ(u|i)gi��������:0[

∇θ
∫
puii′di

′
]
du

+

∫
µθ(u|i)puii′∇θ

{∫
µθ(u

′|i′)Qθ(i′, u′)du′︸ ︷︷ ︸
Jθ(i′)

}
di′du

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 5 / 42

The policy-gradient theorem

∇θJθ(i) =
∫
∇θµθ(u|i)Qθ(i, u)du+

∫
µθ(u|i)puii′∇θJθ(i′)di′du

=

∫
∇θµθ(u|i)Qθ(i, u)du+ E[∇θJθ(i′)]

Apply recursion

E[∇θJθ(ik+1)]

= E

[∫
∇θµθ(uk+1|ik+1)Qθ(ik+1, uk+1)duk+1 + E[∇θJθ(ik+2)]

]

= E

[∫
∇θµθ(uk+1|ik+1)Qθ(ik+1, uk+1)duk+1

]
+ E[∇θJθ(ik+2)]

and unfold until the end of the episode where E[Jθ(iN)] = 0:

∇θJθ(i) =
N−1∑
k=0

Ep(ik)

[∫
∇θµθ(uk|ik)Qθ(ik, uk)duk

]
.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 6 / 42

MC simulation of the policy gradient

When we are able to build the computational graph of Jθ(i), we
can also compute ∇θJθ(i). But this is possible under two
assumptions: i) we have access to the true environment model, ii)
the expectations with respect to the environment model are
analytically tractable.
The alternative is MC simulation but how shall we take the inner
integral when ∇θπθ(u|i) is not a probability distribution from which
we can draw samples?

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 7 / 42

The REINFORCE trick
Theorem
For any distribution x ∼ p(x; θ) parameterized by θ and any function
f(x) defined on the support set of p(·), the following identity holds

∇θEp(x;θ)[f(x)] =
∫
f(x)∇θ log p(x; θ)p(x; θ)dx. (2)

Proof.

∇θEp(x;θ)[f(x)] = ∇θ
∫
f(x)p(x; θ)dx

=

∫
f(x)∇θp(x; θ)dx

=

∫
f(x)

∇θp(x; θ)
p(x; θ)

p(x; θ)dx

=

∫
f(x)∇θ log p(x; θ)p(x; θ)dx □

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 8 / 42

Apply the trick to the policy gradient

∇θJθ(i) =
N−1∑
k=0

Ep(ik)

[∫
∇θµθ(uk|ik)Qθ(ik, uk)duk

]

=

N−1∑
k=0

Ep(ik)

[∫
∇θµθ(uk|ik)

µθ(uk|ik)
µθ(uk|ik)

Qθ(ik, uk)duk

]

=

N−1∑
k=0

Ep(ik)

[∫
∇θµθ(uk|ik)
µθ(uk|ik)

µθ(uk|ik)Qθ(ik, uk)duk

]

=

N−1∑
k=0

Ep(ik)

[∫
∇θ logµθ(uk|ik)Qθ(ik, uk)µθ(uk|ik)duk

]

=

N−1∑
k=0

Ep(ik)µθ(uk|ik)

[
∇θ logµθ(uk|ik)Qθ(ik, uk)

]

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 9 / 42

Now do MC simulation

∇θJθ(i) =
N−1∑
k=0

Ep(ik)µθ(uk|ik)

[
Qθ(ik, uk)∇θ logµθ(uk|ik)

]
For M sampled sequences {(im0 , um0), (im1 , u

m
1), . . . , (imN−1, u

m
N−1)}

Qθ(ik, uk) ≈
1

M

M∑
m=1

N−1∑
j=k

g(imj , u
m
j , u

m
j+1)︸ ︷︷ ︸

Cm
k

.

which gives us a MC estimate of the policy gradient

∇θJθ(i) ≈
1

M

M∑
m=1

N−1∑
k=0

Cmk ∇θ logµθ(umk |imk).

The corresponding loss is then given as

θ∗ := argmin
θ

1

M

M∑
m=1

N−1∑
k=0

Cmk logµθ(u
m
k |imk).

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 10 / 42

The REINFORCE algorithm

MC maximization with respect to the policy gradient can be expressed
as an algorithm called REINFORCE.

repeat ▷ Episodes
act uk ∼ µ(uk|ik) and observe ik+1, ∀k = 0, . . . , N ▷ Full backup
C := 0
for do k = N − 1→ 0

C := C + g(ik, uk, ik+1)
θ := θ − γC∇θ logµθ(uk|ik)

end for
until convergence

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 11 / 42

Actor-critic methods

REINFORCE can only update policy network parameters after
sampling a full episode, which generates high variance on the
gradient estimator.
One can instead maintain a value predictor alongside the policy
function and use it for bootstapping, hence speed up learning and
reduce estimator variance. RL algorithms that follow this approach
are called actor-critic methods.
The policy function is the actor, as the actions are taken based on
it, and the cost-to-go estimate is the critic as it estimates the
consequences of a taken action.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 12 / 42

Baselines
Choose an arbitrary function b(ik), called a baseline, and subtract it
from the cost-to-go

E
[∫
∇θµθ(uk|ik)

[
Qθ(ik, uk)− b(ik)

]
duk

]
= E

[∫
∇θµθ(uk|ik)Qθ(ik, uk)duk

]
− E

[∫
∇θµθ(uk|ik)b(ik)duk

]
= E

[∫
∇θµθ(uk|ik)Qθ(ik, uk)duk

]
− E

[
����������:0

∇θ
∫
µθ(uk|ik)dukb(ik)

]
= E

[∫
∇θµθ(uk|ik)

[
Qθ(ik, uk)

]
duk

]
Hence subtracting a baseline does not change the policy gradient, i.e.
the mean MC estimator will remain unchanged. But we can exploit
b(ik) to reduce its variance.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 13 / 42

Actor-critic methods
Choose the cost-to-go function as the baseline Jϕ(i) and apply the
REINFORCE trick:

∇θJθ(i) =
N−1∑
k=0

Ep(ik)µθ(uk|ik)

[
∇θ logµθ(uk|ik)

(
Qθ(ik, uk)− Jψ(ik)

)]

The corresponding objective for a single sampled sequence is then

θ∗, ψ∗ := argmin
θ,ψ

N−1∑
k=0

[
Ck − Jψ(ik)

]
logµ(uk|ik).

Doing bootstrapping and replacing Ck − Jψ(ik) by one-step TD error
δk = g(ik, uk, ik+1) + Jψ(ik+1)− Jψ(ik) gives objective

θ∗, ψ∗ := argmin
θ,ψ

N−1∑
k=0

δk logµ(uk|ik).

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 14 / 42

A generic on-policy actor-critic algorithm

repeat ▷ episodes
for do k = 0→ N − 1 ▷ go forward in time

act uk ∼ µ(uk|ik) and observe ik+1 ▷ inside the loop now
δk := g(ik, uk, ik+1) + αJψ(ik+1)− Jψ(ik)
θ := θ − γaδk∇θ logµθ(uk|ik)
ψ := ψ − γcδk∇ψJψ(ik)

end for
until convergence

Extension of the above algorithm to multi-step bootstrapping is trivial.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 15 / 42

Pros and cons of actor-critic methods

Pros:
i) Reduce the variance of the policy-gradient estimator
ii) Lift the need by whole-episode backups
iii) Applicable to non-episodic setups

Cons:
i) Bootstrapping causes bias
ii) Increased parameter count

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 16 / 42

Modern problems of AC approaches

How to generalize to off-policy?
How to permit benefiting from a replay memory?
How to control policy update speed?

▶ Baselines reduce estimator variance but do not determine training
speed.

▶ Policies are distributions, but are improved via parameter updates.
▶ The magnitude of a parameter update does not give sufficient clue

about the magnitude of the change on the policy distribution.
▶ Online RL requires slow policy updates for stable training.
▶ But how to quantify change for distributions? We need information

theory for this.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 17 / 42

Information

We would like to measure the amount of information received when a
binary variable x ∈ {0, 1} is observed.

Information: Degree of surprise after observing x.

Devise a function h(x) to quantify information gained from x.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 18 / 42

How should h(x) look like?

When we observe two independent binary variables x and y, the
information received should be the sum of the individual events.

Because independence implies p(x, y) = p(x)p(y), it is suitable to
measure information by

h(x) = − log2 p(x).

Base 2 is arbitrary, except having historical roots at communication
theory. When base 2 is used, the measure is called a bit!

Negative sign assures that information with surprise, i.e. occurrence of
a low-probability event.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 19 / 42

Entropy
Expected amount of information for random variable x living in a
sample space X and following a distribution p(x):

H[x] = −
∑
x∈X

log2 p(x)p(x).

Note that the case for p(x) = 0 looks degenerate. Handle this by
limp→0 p ln p = 0, hence H[x] = 0.

For binary random variables:

H(p) = −p log2 p−(1−p) log2(1−p).

0 0.5 1
0

0.5

1

p

H
(p

)

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 20 / 42

Examples

Example 1: Consider the case where we have four possible states.
When they are equally likely, the entropy turns out to be

H[x] = 4×
[
− 1

4
log2

1

4

]
= 2 bits.

Example 2: Assume we have again four possible states, this time with

probabilities
(5
8
,
1

4
,
1

16
,
1

16

)
. Then the entropy is

H[x] = −5

8
log2

5

8
− 1

4
log2

1

4
− 2

1

16
log2

1

16
= 0.42 + 0.5 + 0.5 = 1.42 bits.

There is more information in the uniform case!

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 21 / 42

Measures of information content

Measures of information content

− log2 p(x)→ bits

− ln p(x)→ nats

Distributions that maximize the entropy
▶ Discrete→ uniform
▶ Continuous (for a given location and spread)→ normal!

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 22 / 42

Entropy in the continuous domain

No exact counterpart.
Using mean value theorem, we attain that entropy of a continuous
density p(x) differs from the term below by − ln∆

H[x] = −
∫
p(x) log p(x)dx.

This term is called the differential entropy.
Although differential entropy diverges from the exact entropy as
∆→ 0, it is often used in place of the plain entropy for continuous
densities. We will adopt the same convention here.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 23 / 42

Relative entropy or KL divergence

Suppose for some reason, we need to approximate p(x) by another
density q(x), which has some more pleasant properties. The
additional information (in nats) required to be conveyed as a result of
using q(x) in place of p(x) is

− log q(x)−
(
− log p(x)

)
= − log

q(x)

p(x)
= log

p(x)

q(x)
.

Since x follows p(x), the expected additional information is

DKL[p||q] =
∫

log
p(x)

q(x)
p(x)dx.

This quantity is called relative entropy or Kullback-Leibler divergence
and denoted by DKL[p||q].

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 24 / 42

KL divergence is a statistical distance

Considering that − log x is a convex function,

DKL[p||q] = −
∫
p(x) log

q(x)

p(x)
dx

≥ − log

∫
p(x)

q(x)

p(x)
dx︸ ︷︷ ︸

1

= 0.

Because − log x is a strictly convex function (i.e. equality holds only at
intersection points),

p(x) = q(x) ⇐⇒ DKL[p||q] = 0.

Hence, KL divergence is a statistical distance measure between two
distributions. Note that DKL[p||q] ̸= DKL[q||p].

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 25 / 42

Other distance metrics
Total variation distance

DTV (p||q) = max
x
|p(x)− q(x)|.

Also known as the maximum norm ||p− q||∞ for discrete p and q.
Hellinger distance

DH(p||q) =

√
1

2

∫ (√
p̃(x)−

√
q̃(x)

)2
λ(dx)

for measure λ that satisfies p(dx) = p̃(x)λ(dx) and q(dx) = q̃(x)λ(dx).
Here p and q are called the Radon-Nikodym derivatives of p and q.
Some properties:

DTV (p||q) ≤
√

1

2
DKL(p||q) Pinsker’s inequality

DH(p||q)2 ≤ DTV (p||q) ≤
√
2DH(p||q)

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 26 / 42

Trust region methods
Vanilla AC optimization problem can be expressed as

argmin
θ

N−1∑
k=0

Ep(ik)µθ(uk|ik)

[
logµθ(uk|ik)Aµ(i, u)

]
where Aµ(i, u) := Qµ(i, u)− Jµ(i) is the advantage function.
Define visitation frequency ρµ(i) =

∑∞
k=0 α

kP(ik = i|µ). Then provably

Jµ′ = Jµ + Eµ′
[∞∑
k=0

αkAµ(ik, uk)

]

= Jµ +

∞∑
k=0

∑
i

P(ik = i|µ′)
∑
u

µ′(u|s)αkAµ(i, u)

= Jµ +
∑
i

∞∑
k=0

αkP(ik = i|µ′)
∑
u

µ′(u|i)Aµ(i, u)

= Jµ +
∑
i

ρµ′(i)
∑
u

µ′(u|i)Aµ(i, u).

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 27 / 42

The outcome

Jµ′ = Jµ +
∑
i

ρµ′(i)
∑
u

µ′(u|s)Aµ(i, u).

means a policy update µ→ µ′ guarantees improvement if∑
u µ

′(u|s)Aµ(i, u) ≤ 0, ∀i. Then do

argmin
µ′

Jµ +
∑
i

ρµ′(i)
∑
u

µ′(u|s)Aµ(i, u).

The dependency of the objective on µ via ρ makes optimization
difficult. Use instead the objective below

Lµ(µ
′) := Jµ +

∑
i

ρµ(i)
∑
u

µ′(u|s)Aµ(i, u).

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 28 / 42

Policy update with improvement guarantee
If the policy is updated by µ′ = γ

(
argminµ∗ Lµ(µ

∗)
)
+ (1− γ)µ then

Jµ′ ≤ Lµ(µ′) +
2αmini |Eµ′ [Aµ(i, u)]|

(1− α)2
γ2, [Kakade-Langford]

which means a guaranteed improvement. Here γ ∈ (0, 1) tunes the
similarity of µ and µ′. Assuming

γ = Dmax
TV (µ||µ′) = max

i
(DTV (µ(·|i)||µ′(·|i)))

this bound can be generalized to arbitrary policies and update rules as

Jµ′ ≤ Lµ(µ′) +
2αmini,u |Aµ(i, u)|

(1− α)2
Dmax
TV (µ||µ′)2

≤ Lµ(µ′) +
4αmini,u |Aµ(i, u)|

(1− α)2
Dmax
KL (µ||µ′)2 :=M(µ′) [Pinsker]

where Dmax
KL (µ||µ′) = maxi(DKL(µ(·|i)||µ′(·|i))). An update µ→ µ′

gives M(µ′) ≤M(µ). As M(µ) = Jµ ⇒ Jµ′ − Jµ ≤M(µ′)−M(µ),
every update improves.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 29 / 42

From theory to practice
The second term of M(µ) involves a minimization problem and may
induce too slow policy updates. Replace by a trust region constraint

argmin
θ′

Lµθ(θ
′)

subject to Dmax
KL (µθ||µθ′) ≤ τ

for trust region radius τ > 0. Approximate

Dmax
KL (µ||µ′) ≈ Ei∼µθ [DKL(µ(·|i)||µ′(·|i))]

and do importance sampling wrt b(u|i), which gives the final objective

argmin
θ′

Ei∼ρµθ ,u∼b(u|i)

[
µθ′(u|i)
b(u|i)

Qµθ(i, u)

]
subject to Ei∼ρµθ [DKL(µ(·|i)||µ′(·|i))] ≤ τ

Common to choose b(u|i) := µθ(u|i).
M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 30 / 42

Trust Region Policy Optimization (TRPO)

repeat
act u ∼ µθ(u|i), observe i′, add D := D ∪ (i, u, gi, i

′) ▷ explore
D̃ ∼ D ▷ improve
Solve

θ′ := argmin
θ∗

1

|D̃|

∑
i∈D̃

µθ∗(u|i)
µθ(u|i)

(gi + αJψ(i
′)− Jψ(i))

subject to
1

|D̃|

∑
i∈D̃

DKL(µθ(u|i)||µθ∗(u|i))

ψ := ψ − γc 1

|D̃|

∑
i∈D̃(gi + αJψ(i

′)− Jψ(i))∇ψJψ(i)
θ ← θ′

until convergence

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 31 / 42

Making TRPO really work

The KL term of TRPO simply restricts the magnitude of update but at
the expense of many computational difficulties. One can do the same
with only clipping:

argmin
θ′

Ei∼ρµθ ,u∼µθ(u|i)

[∣∣∣∣∣µθ′(u|i)µθ(u|i)

∣∣∣∣∣
1−ϵ

ϵ

Qµθ(i, u)

]

where the clipping operator is defined for some small ϵ > 0 as∣∣∣t∣∣∣1−ϵ
ϵ

= min(max(t, ϵ), 1− ϵ).

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 32 / 42

Proximal Policy Optimization (PPO)

The working version of TRPO.

repeat
act u ∼ µθ(u|i), observe i′, add D := D ∪ (i, u, gi, i

′) ▷ explore
D̃ ∼ D ▷ improve
Solve

θ′ := argmin
θ′

Ei∼ρµθ ,u∼µθ(u|i)

[∣∣∣∣∣µθ′(u|i)µθ(u|i)

∣∣∣∣∣
1−ϵ

ϵ

(gi + αJψ(i
′)− Jψ(i))

]

ψ := ψ − γc 1

|D̃|

∑
i∈D̃(gi + αJψ(i

′)− Jψ(i))∇ψJψ(i)
θ ← θ′

until convergence

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 33 / 42

PPO Results
Taken on the MuJoCo Half-Cheetah environment. Clipping works
better when used alone compared to together with the KL term.

Figure: https://arxiv.org/abs/1707.06347

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 34 / 42

https://arxiv.org/abs/1707.06347

Off-policy policy-gradient methods

The stable use of methods introduced thus far is on-policy.
On-policy algorithms require new samples for parameter update.
Off-policy algorithms can reuse past experience, hence are often
more sample efficient.
Complementing Q-learning with a parameterized actor net is a
naive solution, that results in unstable coordinate-descent
updates.
Introducing target networks that mimic the originals but are
updated at slower pace delivers a working solution.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 35 / 42

Deep Deterministic Policy Gradient (DDPG)

Remember the Bellman equation

Qψ(i, u) = Ei′
[
gi + αEµθ(u′|i′)[Qψ(i

′, u′)]
]
.

If µ(u′|i′) is deterministic, the equation boils down to

Qψ(i, u) = Ei′
[
gi + αQψ(i

′, µθ(u
′|i′))

]
.

Hence solve

θ∗, ψ∗ := argmin
θ,ψ

E
[(
gi + αQψ(i

′, µθ(u
′|i′))−Qψ(i, µ(u|i))

)2]
.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 36 / 42

Innovation: Making a good old idea work
Do the following for computational stability

Treat Qψ(i′, µθ(u′|i′)) as constant wrt ψ, θ.
Maintain a replay buffer (first time for AC methods!)
Use b(u|i) := µ(u|i) + ω as the behavior policy where ω is an
Ornstein-Uhlenbeck (OU) process,

Wk ∼ N (0, dt),

dωk+1 = −0.15ωkdt+ 0.2dWk,

and dt is the time difference between steps k and k + 1.
Chain rule applies as policy is deterministic. The policy gradient is

∇θJ = Eρb(i)[∇uQψ(i, u)∇θµ(u|i)].

Use target networks θ′, ψ′ to stabilize coordinate descent. Update
them with time lag: θ′ := τθ + (1− τ)θ′ and ψ′ := τψ + (1− τ)ψ′

for τ ∈ (0, 1). This technique is called Polyak averaging.
M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 37 / 42

The DDPG algorithm

repeat
W ∼ N (0, dt), ω := −0.15ωdt+ 0.2W ▷ sample OU
act u ∼ µθ(u|i) + ω, observe i′, add D := D ∪ (i, u, gi, i′) ▷ explore
D̃ ∼ D ▷ sample minibatch
yi := gi + αQψ′(i′, µθ′(·|i′)), ∀(i, gi, i′) ∈ D̃ ▷ compute targets

ψ := argminψ
1

|D̃|

∑
(i,u)∈D̃

(
yi −Qψ(i, u)

)2
▷ update critic

θ := argminθ
1

|D̃|

∑
i∈D̃Qψ(i, µθ(·|i)) ▷ update actor

θ′ := τθ+ (1− τ)θ′, ψ′ := τψ+ (1− τ)ψ′ ▷ update target nets
until convergence

Huge improvement over methods of the same sort in terms of
numerical stability. However, DDPG is still not sufficiently sample
inefficient and computationally stable.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 38 / 42

Soft Actor Critic (SAC)

Goal is to stabilize training by permitting a stochastic policy
network.
First to apply the maximum-entropy technique to off-policy
actor-critic RL. It has been used in other contexts before such as
Inverse RL and model-based RL (Guided Policy Search).
This method is currently the state of the art of model-free
policy-gradient methods.
Maximum Entropy RL:

Jµψ =
∞∑
k=0

Eρµ(ik)[gk +H(µ(·|ik))]

Dual goals: i) minimize cost-to-go, ii) maximize policy entropy.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 39 / 42

Theoretical guarantees of SAC

Soft Bellman backup operator:

(TJµ)(i) = gi + αEi′ [Eu′∼µ[Qµ(i′, u′)− logµ(u′|i′)]]

Soft policy evaluation lemma: limk→∞ T kµQ = Qµ. Proof follows from
redefining cost as gi +H(µ(·|ik)).

Soft policy update rule:

µ′ := arg min
µ′∈Π

DKL

(
µ′(·|i)

∣∣∣∣∣∣ exp(−Qµ(i, u))/∑
u∈U

exp(−Qµ(i, u))
)

Soft policy improvement theorem: Repeating soft policy evaluation and
soft policy update rule converges to the optimal policy within set Π
after finite iterations.

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 40 / 42

The SAC algorithm

repeat
act u ∼ µθ(u|i), observe i′, add D := D ∪ (i, u, gi, i

′)
D̃ ∼ D
u′ ∼ µθ(u′|i′), ∀(gi, i′) ∈ D̃ ▷ compute targets
yi := gi + αmaxj=0,1Qψ′

j
(i′, u′)− logµθ(u

′|i′)

ψj := argminψj
1

|D̃|

∑
(i,u)∈D̃

(
yi −Qψj

(i, u)
)2
, j = 0, 1

ϵ̃i ∼ p(ϵ),∀i ∈ D̃
θ := argminθ

1

|D̃|

∑
i∈D̃ maxj=0,1Qψj

(i, fθ(i, ϵ̃i))− logµθ(fθ(i, ϵ̃i)|i)
ψ′
j := τψj + (1− τ)ψ′

j , j = 0, 1
until convergence

Above ϵ̃ ∼ p(ϵ), ũ = fθ(i, ϵ̃) is a reparameterization of µθ(·|i), i.e. it
follows the same distribution as ũ ∼ µθ(·|i).

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 41 / 42

SAC results

Figure: https://arxiv.org/abs/1801.01290

M. Kandemir (SDU) 7- Policy Gradient Methods Fall 2022 42 / 42

