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Objective vs subjective interpretations of
probability
Objective interpretation:

p(e) = lim
n→+∞

ne

n

ne: Number of times the event of interest occurs
n: Number of trials

This is the frequentist school.

Subjective interpretation:
Express your prior belief (hypothesis H) about a possible outcome
with a number in the scale 0 =impossible and 1 =sure.
Observe the world via measurements M .
Update your belief.

This is the Bayesian school.
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Bayesian statistics

The Bayes rule is not the product rule itself! It uses the product rule to
develop a framework for belief updates on hypotheses.

Figure: Thomas Bayes
(1701-1761)

p(H|X) =
p(X|H)p(H)

p(X)

H: Hypothesis
X: Measurement
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The belief updating machinery

The Bayes rule:

p(θ|x) = p(x|θ)p(θ)
p(x)

x ∈ X is an observation in the sample space X .
θ is a set of model parameters. It is an index to a frequentist, and
a random variable for a Bayesian.
p(x|θ): likelihood (how do model parameters describe data?)
p(θ): prior (what is our prior belief about model parameters?)
p(x): evidence (what is the likelihood of data regardless of the
model parameters?)
p(θ|x): posterior (how do model parameters distribute after
observations are taken into account?)
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Prior? What does it really mean?

Who do you expect to win the tennis game and why?
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What does it mean to be Bayesian in machine
learning?
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Motivation 1 for the Bayesian approach
The random variables (x1, x2, · · · , xN ) are exchangeable if for any
permutation π, the following equality holds

p(x1, x2, · · · , xN ) = p(xπ1 , xπ2 , · · · , xπN ).

De Finetti’s theorem. A sequence of random variables is infinitely
exchangeable, i.e. p(x1, x2, · · · , xN ) = p(xπ1 , xπ2 , · · · , xπN ) iff ∀N ,

p(x1, x2, · · · , xN ) =

∫ N∏
i=1

p(xi|θ)P (dθ)

Implications:
Exchangeability can be checked from right hand side.
There must exist a parameter θ.
There must exist a likelihood p(x|θ).
There must exist a distribution P on θ.
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Motivation 2 for the Bayesian approach

Model averaging. Given a posterior p(θ|x) and a new observation x∗,
the posterior predictive distribution is

p(x∗|x) =
∫

p(x∗|θ)p(θ|x)dθ = Ep(θ|x)[p(x
∗|θ)]

This distribution takes into account all possible values of θ with
importance proportional to the probability of their occurrence.
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Motivation 3 for the Bayesian approach
Model selection. We are given two hypotheses that claim to explain a
certain data set.
Hypothesis 1 (H1): Likelihood: pH1(x|θ1), Prior: pH1(θ1)
Hypothesis 2 (H2): Likelihood: pH2(x|θ2), Prior: pH2(θ2)

We can alternatively treat the hypothesis as a random variable
H = {1, 2} that determines the type of the distribution p(·):

pH1(x|θ1) = p(x|θ1,H = 1), pH2(x|θ2) = p(x|θ2,H = 2)

Let us place a prior on also on the hypothesis variable, e.g.
P (H = 1) = P (H = 2), and consider all possible model parameter
realizations for both hypotheses (i.e. calculate the evidence):

p(x|H = 1) =

∫
p(x|θ1,H = 1)p(θ1|H = 1)dθ1

p(x|H = 2) =

∫
p(x|θ2,H = 2)p(θ2|H = 2)dθ2
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Bayesian model selection
Apply Bayes theorem to calculate the posterior on hypotheses

P (H|x) = p(x|H)P (H)

p(x)

Choose the hypothesis with higher posterior probability. Compare
p(H = 1|x) and p(H = 2|x).

▶ Since p(x) does not depend on H, its magnitude does not have an
effect on the comparison.

▶ Since we chose a uniform prior on the hypotheses
(P (H = 1) = P (H = 2)), the magnitude of P (H) also does not have
an effect.

Hence, it suffices to calculate p(x|H = 1)/p(x|H = 2). This metric
is called the Bayes factor [Kass and Raftery, 1995]. Choose H1

if Bayes factor is greater than 1, choose H2 otherwise.
The model evidence serves as a quantitative score for model
selection in the Bayesian setting.

M. Kandemir (SDU) 8- Modern Bayesian Inference Fall 2022 10 / 42



MLE vs MAP
Given observed data X and the assumption that X ∼ p(X|θ), the
Maximum Likelihood Estimate (MLE) is

θ̂ = argmax
θ

p(X|θ) = argmax
θ

log p(X|θ)

Since log(·) is monotonically increasing

argmax
w

log p(w|X, y) = argmax
w

log
p(y|w,X)p(w)

p(y|X)

= argmax
w

log p(y|w,X) + log p(w)− log p(y|X)︸ ︷︷ ︸
const

= argmax
w

log p(y|w,X) + log p(w)

The found mode is called the Maximum A Posteriori (MAP) estimate
of the model. This is a technique a true Bayesian largely avoids,
though there are specific cases where it is useful.
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What are priors for?

To incorporate prior beliefs
To avoid overfitting

▶ Controlling model complexity:
1 inducing sparsity=regularization
2 marginal likelihood

▶ Marginalization of model parameters (represented as a distribution,
not a point estimate.

To attain posterior uncertainty, which is essential for
▶ active learning
▶ decision making (medicine, finance, etc.)
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Types of priors 1

Non-informative priors: Priors that allow the model and the
data speak for themselves.
Informative priors: Priors that reflect beliefs. They are

subjective but not arbitrary.
Hierarchical priors: Multiple levels of priors

p(θ) =

∫
p(θ|α)p(α)dα

where p(α) is called a hyperprior.
Empirical priors: Learn some of the parameters of the prior

from the data (i.e. Empirical Bayes!)

1Z. Ghahramani’s lecture
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Empirical priors 2

Given:

p(D|α) =
∫

p(D|θ)p(θ|α)dθ

where α is the vector of hyperparameters.
Estimation:

α̂ = argmax
α

p(D|α)

This method is called Type II Maximum Likelihood.
Prediction:

p(x∗|D, α̂) =

∫
p(x|θ)p(θ|D, α̂)dθ

Plus: Tuning the prior belief to data.
Minus: Double accounting of data → Overfitting.

2Z. Ghahramani’s lecture
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Yin-Yang in statistics

Regularization: Frequentist way of being Bayesian
Non-informative priors: Bayesian way of being Frequentist

Image: https://en.wikipedia.org/wiki/Yin_and_yang
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Regularization in linear regression
We intend to have this to satisfy the Occam’s razor principle:

argmin
w

N∑
n=1

(
yn −

D∑
d=1

wdxnd

)2
subject to

D∑
d=1

w2
d < t

which amounts to this

argmin
w

argmax
λ

N∑
n=1

(
yn −

D∑
d=1

wdxnd

)2
+ λ

( D∑
d=1

w2
d − t

)

But in practice we simplify by this

argmin
w ����argmax

λ

N∑
n=1

(
yn −

D∑
d=1

wdxnd

)2
+ λ

( D∑
d=1

w2
d − �t

)

and solve this: argmin
w

∑N
n=1

(
yn − wTXn

)2
+ λ||w||22.
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l2-norm regularization → ridge regression

argmin
w

N∑
n=1

(
yn − wTXn

)2
+ λ ||w||22︸ ︷︷ ︸

wTw

Solution:

∇w

{
(y −Xw)T (y −Xw) + λwTw

}
= 0

wTXTXw − 2yTXw + yT y + λwTw = 0

2XTXw − 2XT y + 2λw = 0

(XTX + λI)w = XT y

(XTX + λI)−1XT y = ŵ

Thanks to λI, the matrix inverse exists even though N < D.
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Conjugacy

If p(θ|D) is in the same family as p(θ), then p(θ) is called a conjugate
prior for p(D|θ). Example. Normal distribution with known variance

x1, · · · , xN |µ, σ2 ∼ N (x|µ, σ2)

µ ∼ N (µ|µ0, σ
2
0)

σ2 → known

The posterior is also normal distributed:

p(µ|x, σ2) = N

µ

∣∣∣∣∣
∑N

i=1 xi
σ2

+
µ0

σ2
0

N

σ2
+

1

σ2
0

,
N

σ2
+

1

σ2
0

 .
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Bayesian linear regression

y,X|w ∼
N∏

n=1

N (yn|wTXn, β
−1) = N (y|Xw, β−1I),

w ∼ N (w|0, α−1I).

We would like to infer p(w|X, y).

log p(w|X, y)

= −α

2
wTw − 1

2
(y −Xw)T (β−1I)−1(y −Xw) + const

= −α

2
wTw − β

2
(yT − wTXT )(y −Xw) + const

= −α

2
wTw − β

2
wTXTXw + βyTXw + const

= −1

2
wT
(
αI + βXTX

)
︸ ︷︷ ︸

Σ−1
p

w + βyTX︸ ︷︷ ︸
µT
p Σ−1

p

w + const.
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Bayesian linear regression cont’d
Hence, Σp =

(
αI + βXTX

)−1
and µp = Σp(βX

T y). Then the
posterior reads

p(w|X, y) = N (w|µp,Σp),

where Σp =
(
αI + βXTX

)−1
and µp = βΣpX

T y.
Take a closer look at the posterior mean:

µp = βΣpX
T y = β

(
αI + βXTX

)−1
XT y

= β

(
β
( 1
β
αI +

1

β
βXTX

))−1

XT y

=

(
α

β
I +XTX

)−1

XT y.

This is the solution of the ridge regression with regularization
parameter set to

α

β
!
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MAP Example

Let us take again the Bayesian linear regression case.

y|w,X ∼ N (y|Xw, β−1I),

w ∼ N (w|0, α−1I).

Our aim is to solve

argmax
w

logN (y|Xw, β−1I) + logN (w|0, α−1I)

= argmax
w

{
− β

2
(y −Xw)T (y −Xw)− α

2
wTw

}

= argmax
w

{
− 1

2
wT
(
βXTX + αI

)
w + βyTXw

}
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MAP Example

Set the gradient of the variable of interest to zero:

∇w

{
− 1

2
wT
(
βXTX + αI

)
w + βyTXw

}
≜ 0

−
(
βXTX + αI

)
w + βXT y ≜ 0

Solving for w and rearranging β in the same way as above gives

ŵ ≜

(
XTX +

α

β
I

)−1

XT y.

Once more we recapitulate the ridge regression.
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Calculus of variations

Typically we have scalars or vectors as variables. Then we operate on
mappings from these variables to other entities. For instance in
f(X) : RD → R, the vector X is our variable of interest and f(·) is a
function of it.

There are some cases where we take functions as variables of interest
and operate on mappings from functions to other entities:

F : f(X) → R.

Such mappings are called functionals. One example is the KL
divergence. The branch of mathematics that has functionals in its
focus is named as the calculus of variations.
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What if we have non-conjugate priors?

Assume we are given a data set X = {X1, · · · , XN} and a Bayesian
model

X|θ ∼
N∏

n=1

p(Xn|θ),

θ ∼ p(θ).

with a non-conjugate prior p(θ) on the set of latent variables wrt
likelihood p(Xn|θ). We are interested in the posterior

p(θ|X)

for which an analytical expression is not available. What shall we do
then?
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Approximating the posterior

Choose a q(θ|Ω), a density parameterized by Ω, and construct an
optimization problem to make q(θ|Ω) as similar as possible to the true
posterior p(θ|X).

This does not solve

DKL[p(θ|X)||q(θ|Ω)] =
∫

p(θ|X) log
p(θ|X)

q(θ|Ω)
dθ.

because the loss function depends on p(θ|X), which we do not know.
Try the other way around.
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Variational Bayes

DKL[q(θ|Ω)||p(θ|X)] =

∫
q(θ|Ω) log q(θ|Ω)

p(θ|X)︸ ︷︷ ︸
p(θ,X)

p(X)

dθ

=

∫
q(θ|Ω) log q(θ|Ω)p(X)

p(θ,X)
dθ

=

∫
q(θ|Ω) log q(θ|Ω)dθ

+

∫
q(θ|Ω) log p(X)dθ

−
∫

q(θ|Ω) log p(θ,X)dθ
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Variational Bayes

DKL[q(θ|Ω)||p(θ|X)] =Eq(θ|Ω)[log q(θ|Ω)]︸ ︷︷ ︸
−Hq(θ|Ω)[θ]

+Eq(θ|Ω)[log p(X)]︸ ︷︷ ︸
log p(X)

− Eq(θ|Ω)[log p(θ,X)]

Arranging the terms, we get the interesting outcome below

log p(X)︸ ︷︷ ︸
const

= Eq(θ|Ω)[log p(θ,X)] +Hq(θ|Ω)[θ]︸ ︷︷ ︸
L

+DKL[q(θ|Ω)||p(θ|X)]︸ ︷︷ ︸
≥0

.

As L is a lower bound on the log evidence, it is called the Evidence
Lower Bound (ELBO). ELBO equals to the log-evidence iff
q(θ|Ω) = p(θ|X).
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Inference as optimization

Let us take a closer look at the generic form and contemplate on the
feasibility of the approach

arg max
q(θ|Ω)

L(Ω)

= argmax
Ω

{
N∑

n=1

Eq(θ|Ω)[log p(Xn|θ)] + Eq(θ|Ω)[log p(θ)] +Hq(θ|Ω)[θ]

}

= argmax
Ω

{
N∑

n=1

Eq(θ|Ω)[log p(Xn|θ)]︸ ︷︷ ︸
Data fit

−DKL[q(θ|Ω)||p(θ)]︸ ︷︷ ︸
Complexity penalizer

}

Calculate Eq(θ|Ω)[log p(Xn|θ)] and look up Hq(θ|Ω)[θ] or alternatively
DKL[q(θ|Ω)||p(θ)]. Take the gradient of the ELBO wrt Ω and optimize.
Choosing (θ) =

∏
i∈P q(θi) is called mean-field variational Bayes. This

is in contrast to structured variational Bayes.
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Bayesian Neural Nets (BNN)

Given data D = {(xn, yn)|n = 1, . . . , N}, a Bayesian neural net is
defined as the data generating process below

p(D|θ) =
N∏

n=1

N (yn|fθ(xn), gθ(xn))

p(θ) = N (θ|0, κ−1I),

where

fθ(x) = W T
2 σ(W T

1 x), gθ(x) = exp(W T
3 σ(W T

1 x)),

κ ∈ R+ and θ = {W1,W2,W3}. Such weight sharing is called the
head-split design. It is still a BNN when the design of the likelihood
function or the architectures of the neural nets f, g changes.
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Variational inference of BNNs

Make the mean-field assumption for simplicity and choose the
variational distribution below

q(θ; Ω) =
∏
j∈θ

N (θj |mj , s
2
j )

where Ω = {m,S} with m = {mj |j ∈ θ} and S = {s2j |j ∈ θ}. Then

L(θ) =
N∑

n=1

EN (θ|m,S)[logN (yn|fθ(xn), gθ(xn))]

−DKL(N (θ|m,S)||N (θ|0, κ−1I))
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Deep dive into the KL penalizer

DKL(N (θ|m,S)||N (θ|0, κ−1I)) =

∫
log

N (θ|m,S)

N (θ|0, κ−1I)
N (θ|m,S)dθ

=

∫ ∑
j∈θ

log
N (θj |m,S)

N (θj |0, κ−1I)

∏
j∈θ

N (θj |mj , s
2
j )dθ1, . . . θ|θ|

=
∑
j∈θ

∫
log

N (θj |m,S)

N (θj |0, κ−1I)
N (θj |mj , s

2
j )dθj

=
∑
j∈θ

DKL(N (θj |mj , s
2
j )||N (θj |0, κ−1I))

=
∑
j∈θ

{
log

(
κ−1

s2j

)
+

s2j +m2
j

2κ−1
− 1

2

}
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Deep dive into the data fit term

Use log-scale reparameterization N (θ|m,S) as

ϵ ∼ N (0, I), θ = m+
√
Sϵ.

Eθ∼N (θ|m,S)

[
N∑

n=1

logN (yn|fm+
√
Sϵ(xn), gm+

√
Sϵ(xn))

]

= −Eϵ∼N (0,I)

[
1

2
log gm+

√
Sϵ(xn) +

1

2gm+
√
Sϵ(xn)

(yn − fm+
√
Sϵ(xn))

2

]
− 1

2
log(2π)

where the last term is constant wrt m,S and the expectaction can now
be taken simply by MC integration.
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Local reparameterization
Plain MC may incur high estimator variance in calculation of the term

−Eϵ∼N (0,I)

[
N∑

n=1

1

2
log gm+

√
Sϵ(xn) +

1

2gm+
√
Sϵ(xn)

(yn − fm+
√
Sϵ(xn))

2

]
as a single sample ϵ is passed on to the data fit terms of all data
points. We can reduce its variance if we can sample for each data
point separately.

Denote by hn := [h1n, . . . , h
K
n ] the activation map of an intermediate

layer of a neural net consisting of K neurons for data point xn and by
q(w) :=

∏
j N (wr

j |mr
j , (s

r
j)

2) the approximate weight posterior of the rth
neuron of that layer. We are interested in the following intermediate
random variable in the MC integration process: vrn = wT

r hn, wr ∼ q(wr).
Affine transform of a normal distribution is another normal, hence

vrn = wThn ∼ N

 K∑
j=1

mjh
j
n,

K∑
j=1

(hjn)
2s2j

 .
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Local reparameterization

Apply the log-scale reparameterization on the local (i.e. data point
specific) random variable vn

ϵrn ∼ N (0, 1), vrn =

K∑
j=1

mr
jh

j
n + ϵrn

√
(hjn)2s2j

Then compute the activation map of the next layer as

h′ := σ([v1n, . . . , v
K′
n ])

for each of its K ′ neurons. Then repeat the same process until the
output layer is reached. This is called the local reparameterization
trick3.

3https://arxiv.org/abs/1506.02557
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Gaussian dropout
Consider plain dropout for dropout rate ρ ∈ (0, 1):

zrn ∼ Bernoulli(1− ρ), vrn =
1

(1− ρ)

K∑
j=1

wjh
j
nz

r
n.

Here vrn is sum of K independent random variables and K is typically
large. Due to the Central Limit Theorem, vrn will be approximately
normal distributed. Calculate its first two moments and sample from
the resulting normal distribution. This is called Gaussian dropout:

E[vrn] =
1

(1− ρ)

K∑
j=1

wjh
j
nE[zrn] =

K∑
j=1

wjh
j
n,

Var[vrn] =

K∑
j=1

Var

[
1

(1− ρ)
wj(h

j
n)z

r
n

]
=

1

(1− ρ)

K∑
j=1

w2
j (h

j
n)

2Var[zrn]

=
1

(1− ρ)2

K∑
j=1

w2
j (h

j
n)

2ρ(1− ρ) =
ρ

1− ρ

K∑
j=1

w2
j (h

j
n)

2.
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Variational dropout
Compare the resulting distribution

p(vrn) ≈ N

 K∑
j=1

wjh
j
n,

ρ

1− ρ

K∑
j=1

w2
j (h

j
n)

2

 .

to what we got for variational inference of BNNs

vrn = wThn ∼ N

 K∑
j=1

mjh
j
n,

K∑
j=1

(hjn)
2s2j

 .

Match mj = wj and ρ
(1−ρ)w

2
j = αm2

j = s2j where α = ρ
(1−ρ) . Hence

logα = log s2j − logm2
j ,

which is a commonplace quantity to set thresholds for pruning a
synaptic connection. This means mean-field variational inference of a
BNN corresponds to learning an individual dropout rate for each
neuron! That is why it is also referred to as variational dropout.
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Torch implementation
1 class VBLinear(torch.nn.Module ):
2 def __init__(self , in_features , out_features ):
3 super(VBLinear , self). __init__ ()
4 self.n_in = in_features; self.n_out = out_features
5 self.prior_prec = 10
6 self.bias = torch.nn.Parameter(torch.Tensor(out_features ))
7 self.mu_w = torch.nn.Parameter(torch.Tensor(out_features , in_features ))
8 self.logsig2_w = torch.nn.Parameter(torch.Tensor(out_features , in_features ))
9 self.reset_parameters ()

10

11 def reset_parameters(self):
12 stdv = 1.0 / torch.sqrt(self.mu_w.size (1))
13 self.mu_w.data.normal_(0, stdv)
14 self.logsig2_w.data.zero_ (). normal_(-9, 0.001)
15 self.bias.data.zero_()
16

17 def KL(self , loguniform=False ):
18 logsig2_w = self.logsig2_w.clamp(-11, 11)
19 kl = (0.5* (self.prior_prec * (self.mu_w.pow(2)
20 + logsig2_w.exp()) - logsig2_w - 1- torch.log(self.prior_preci )). sum())
21 return kl
22

23 def forward(self , input ):
24 mu_out = torch.nn.functional.linear(input , self.mu_w , self.bias)
25 s2_w = self.logsig2_w.clamp(-11, 11). exp()
26 var_out = torch.nn.functional.linear(input.pow(2), s2_w) + 1e-8
27 return mu_out + var_out.sqrt() * torch.randn_like(mu_out)
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Variational Auto-Encoders (VAEs) 4

Consider the unlabeled data set X = {x1, . . . , xN}. Assume it follows
the generating process below

p(zn) = N (zn|0, I), ∀n = 1, . . . , N

p(xn|zn) = N (xn|fθ(zn), gθ(zn)),

where zn ∈ RD is a latent representation of observation xn. The true
posterior factorizes across data points

p(Z|X) =

∏N
n=1 p(xn|zn)p(zn)∫ ∏N

n=1 p(xn|zn)p(zn)dz1, . . . , dzn

=

∏N
n=1 p(xn|zn)p(zn)∏N

n=1

∫
p(xn|zn)p(zn)dzn

=

N∏
n=1

p(xn|zn)p(zn)
p(xn)

=
N∏

n=1

p(zn|xn).

4https://arxiv.org/abs/1312.6114
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Amortization
Reflect the factorization of the true posterior to variational distribution:

q(Z|X) =

N∏
n=1

q(zn|Ωn).

This neat factorization comes at the expense of the parameter size to
grow proportional to N . Assume q(zn|Ωn) = N (mn, s

2
n), then we have

2N free parameters for a data set with N data points! Inspire by the
fact that q(zn|Ωn) ≈ p(zn|xn) and do

q(zn;ω, xn) = N (hω(xn), vω(xn)).

This way we use the observed sample to obtain a parametric
expression of the variational posterior. This technique has three
names in the literature:

amortization (arguably the most widespread one)
inference networks
recognition models
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The VAE ELBO

L(ω) =
N∑

n=1

{
Eq(zn;ω,xn)[log p(xn|zn)]−DKL(q(zn;ω, xn)||p(zn))

}
=

N∑
n=1

{
EN (hω(xn),vω(xn))[log p(xn|zn)]

−DKL(N (hω(xn), vω(xn))||N (0, I))

}

We apply once again the log-scale reparameterization

ϵn ∼ N(0, I), zn = hω(xn) + ϵn
√

vω(xn).

Thanks to the factorized posterior, our reparameterization is already
local. No further tricks required.
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Why is VAE an auto-encoder?

L(ω) =
N∑

n=1

{
Eϵn∼N (0,I)

[
logN

(
xn

∣∣∣fθ(hω(xn) + ϵn
√

vω(xn)),

gθ(hω(xn) + ϵn
√

vω(xn)
)]

−DKL(N (hω(xn), vω(xn))||N (0, I))

}

Variational because of the inference technique, auto-encoder because
The inference network hω(xn) + ϵn

√
vω(xn) maps from

observation space to latent space, hence encodes.
The likelihood networks fθ(·), gθ(·) map from the latent space to
observation space, hence decode.
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The VAE loss in full details

argmin
ω

N∑
n=1

Eϵn∼N (0,I)

[
log gθ(hω(xn) + ϵn

√
vω(xn)

)
+

(yn − fθ(hω(xn) + ϵn
√

vω(xn)))
2

gθ(hω(xn) + ϵn
√

vω(xn)
)

+

D∑
j=1

[
vjω(xn) + hjω(xn)

2 − 2 log(vjω(xn))
]]

This is the negative ELBO, which is sometimes referred to as the
Variational Free Energy (VFE). The index j runs over the latent
space dimensions.
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