SDU

9- Dynamics Modeling with Neural Nets

Melih Kandemir
University of Southern Denmark
Department of Mathematics and Computer Science (IMADA)
kandemir@imada.sdu.dk

Fall 2022

Recurrent Neural Nets (RNNs)

The simplest choice is a recurrent neural net

$$
x_{t+1}:=f_{\theta}\left(x_{t}, t\right)
$$

Common choice is $x_{t+1}:=W \tanh \left(x_{t}\right)$. Note how dependencies grow

$$
\begin{aligned}
x_{1} & :=W \tanh \left(x_{0}, 0\right) \\
x_{2} & :=W \tanh \left(W \tanh \left(x_{0}, 0\right)\right) \\
x_{3} & :=W \tanh \left(W \tanh \left(W \tanh \left(x_{0}\right)\right)\right) \\
& \vdots \\
x_{N} & :=W \tanh \left(W \tanh \left(\cdots W \tanh \left(x_{0}\right), \cdots\right)\right.
\end{aligned}
$$

Possible to enhance the nonlinearity of per-time-step update

$$
x_{t+1}:=W_{1} \tanh \left(W_{2} \tanh \left(x_{t}\right)\right)
$$

Latent state spaces and Seq2Seq design

Also possible to model dynamics in a latent state space:

$$
\begin{aligned}
x_{t+1} & :=W_{s} \tanh \left(x_{t}\right)+W_{i} \tanh \left(u_{t}\right), \\
y_{t+1} & :=W_{o} \tanh \left(x_{t+1}\right)
\end{aligned}
$$

It is even possible to input a sequence x_{A}, \ldots, x_{B} and output another not necessarily time-aligned sequence y_{C}, \ldots, y_{D} :

$$
\begin{aligned}
x_{t+1} & :=W_{s} \tanh \left(x_{t}\right)+W_{i} \tanh \left(u_{t}\right), & t=A, \ldots, B \\
y_{t+1} & :=W_{o} \tanh \left(x_{t+1}\right), & t=C, \ldots, D .
\end{aligned}
$$

This is called the seq2seq design. A common choice in machine translation applications is $C=B+1$, i.e. read the whole sentence first and translate afterwards.

The bottleneck problem

In a seq2seq model, the only information the decoder has about the encoder is the last hidden state x_{B} of the encoded sequence. This causes big information loss especially for long sequences.

Chain rule for feedback loop systems

Given input x_{0} and its intermediate representations $x_{l}=f_{\theta_{l}}\left(x_{l-1}\right)$ For feedforward for $l=1,2, \ldots, L$ we have

$$
\frac{d}{d \theta_{l}} f_{\theta_{L}}\left(f_{\theta_{L-1}}\left(\cdots f_{\theta_{l}}\left(x_{l-1}\right) \cdots\right)\right)=\frac{d x_{L}}{d x_{L-1}} \frac{d x_{L-1}}{d x_{L-2}} \cdots \frac{d x_{l}}{d x_{l-1}} \frac{d x_{l}}{d \theta_{l}}
$$

Things are tricker when the same function is repeated $x_{l}=f_{\theta}\left(x_{l-1}\right)$ sharing the same parameter across nested operations. Above the chain rule applies backwards $L \rightarrow l$. Now it needs to be forward in time and x_{l} depends both directly on θ and via x_{l-1} :

$$
\frac{d x_{2}}{d \theta}=\frac{\partial x_{2}}{\partial \theta}+\frac{\partial x_{2}}{\partial x_{1}} \frac{d x_{1}}{d \theta}
$$

Go one step further

$$
\frac{d x_{3}}{d \theta}=\frac{\partial x_{3}}{\partial \theta}+\frac{\partial x_{3}}{\partial x_{2}} \frac{d x_{2}}{d \theta}=\frac{\partial x_{3}}{\partial \theta}+\frac{\partial x_{3}}{\partial x_{2}}\left(\frac{\partial x_{2}}{\partial \theta}+\frac{\partial x_{2}}{\partial x_{1}} \frac{d x_{1}}{d \theta}\right) .
$$

Chain rule for feedback loop systems

Another step

$$
\begin{aligned}
\frac{d x_{4}}{d \theta} & =\frac{\partial x_{4}}{\partial \theta}+\frac{\partial x_{4}}{\partial x_{3}} \frac{\partial x_{3}}{\partial \theta}+\frac{\partial x_{4}}{\partial x_{3}} \frac{\partial x_{3}}{\partial x_{2}} \frac{d x_{2}}{d \theta} \\
& =\frac{\partial x_{4}}{\partial \theta}+\frac{\partial x_{4}}{\partial x_{3}} \frac{\partial x_{3}}{\partial \theta}+\frac{\partial x_{4}}{\partial x_{3}} \frac{\partial x_{3}}{\partial x_{2}}\left(\frac{\partial x_{2}}{\partial \theta}+\frac{\partial x_{2}}{\partial x_{1}} \frac{d x_{1}}{d \theta}\right) \\
& =\frac{\partial x_{4}}{\partial \theta}+\frac{\partial x_{4}}{\partial x_{3}} \frac{\partial x_{3}}{\partial \theta}+\frac{\partial x_{4}}{\partial x_{3}} \frac{\partial x_{3}}{\partial x_{2}} \frac{\partial x_{2}}{\partial \theta}+\frac{\partial x_{4}}{\partial x_{3}} \frac{\partial x_{3}}{\partial x_{2}} \frac{\partial x_{2}}{\partial x_{1}} \frac{d x_{1}}{d \theta} .
\end{aligned}
$$

Generalize to an arbitrary t th step

$$
\frac{d x_{t}}{d \theta}=\sum_{j=1}^{t}\left(\prod_{k=j+1}^{t} \frac{\partial x_{k}}{\partial x_{k-1}}\right) \frac{\partial x_{j}}{\partial \theta}
$$

Back-Propagation Through Time (BPTT)

Denote ground truth as \hat{x}_{t}, model as $x_{t}=f_{\theta}\left(x_{t-1}\right)$ and solve

$$
\arg \min _{\theta} \sum_{t=1}^{N} \frac{1}{2}\left(\hat{x}_{t}-x_{t}\right)^{2}
$$

by gradient-descent, hence

$$
\begin{aligned}
\theta & :=\theta-\gamma \sum_{t=1}^{N}\left(\hat{x}_{t}-x_{t}\right) \frac{d x_{t}}{d \theta} \\
& =\theta-\gamma \sum_{t=1}^{N}\left(\hat{x}_{t}-x_{t}\right) \sum_{j=1}^{t}\left(\prod_{k=j+1}^{t} \frac{\partial x_{k}}{\partial x_{k-1}}\right) \frac{\partial x_{j}}{\partial \theta}
\end{aligned}
$$

Unrolling the RNN to collect gradient signal from consecutive time steps to update a single parameter set is called Back-Propagation Through Time (BPTT).

For details see https://arxiv.org/pdf/1211.5063.pdf

The norm (magnitude) of the gradient

$$
\begin{aligned}
\| \sum_{t=1}^{N}\left(\hat{x}_{t}-x_{t}\right) & \sum_{j=1}^{t}\left(\prod_{k=j+1}^{t} \frac{\partial x_{k}}{\partial x_{k-1}}\right) \frac{\partial x_{j}}{\partial \theta} \| \\
& =\sum_{t=1}^{N}\left\|\left(\hat{x}_{t}-x_{t}\right) \sum_{j=1}^{t}\left(\prod_{k=j+1}^{t} \frac{\partial x_{k}}{\partial x_{k-1}}\right) \frac{\partial x_{j}}{\partial \theta}\right\| \\
& \leq \sum_{t=1}^{N}\left\|\left(\hat{x}_{t}-x_{t}\right)\right\| \cdot\left\|\sum_{j=1}^{t}\left(\prod_{k=j+1}^{t} \frac{\partial x_{k}}{\partial x_{k-1}}\right) \frac{\partial x_{j}}{\partial \theta}\right\| \\
& =\sum_{t=1}^{N}\left\|\left(\hat{x}_{t}-x_{t}\right)\right\| \cdot \sum_{j=1}^{t}\left\|\left(\prod_{k=j+1}^{t} \frac{\partial x_{k}}{\partial x_{k-1}}\right) \frac{\partial x_{j}}{\partial \theta}\right\| \\
& \leq \sum_{t=1}^{N}\left\|\left(\hat{x}_{t}-x_{t}\right)\right\| \cdot \sum_{j=1}^{t} \prod_{k=j+1}^{t}\left\|\frac{\partial x_{k}}{\partial x_{k-1}}\right\| \cdot\left\|\frac{\partial x_{j}}{\partial \theta}\right\|
\end{aligned}
$$

The vanishing gradients problem

For the classical RNN design $x_{k}=W \sigma\left(x_{k-1}\right)$ with some activation function $\sigma(\cdot)$ we have

$$
\left\|\frac{\partial x_{k}}{\partial x_{k-1}}\right\|=\left\|W \frac{\partial \sigma\left(x_{k-1}\right)}{\partial x_{k-1}}\right\| \leq\|W\| \cdot\left\|\frac{\partial \sigma\left(x_{k-1}\right)}{\partial x_{k-1}}\right\|
$$

It is likely $\|W\|<1 /\left\|\partial \sigma\left(x_{k-1}\right) / \partial x_{k-1}\right\|$ to happen, which would cause

$$
\left\|\frac{\partial x_{k}}{\partial x_{k-1}}\right\|<1 \Rightarrow \prod_{j=t}^{k} \underbrace{\left\|\frac{\partial x_{k}}{\partial x_{k-1}}\right\|}_{\eta_{j} \in[0,1)} \Rightarrow \lim _{t \rightarrow \infty} \eta_{*}^{t-k}=0
$$

where $\eta_{*}=\max _{j} \eta_{j}$. The contribution of the terms dependent on past experience to the gradient vanishes exponentially with the time difference $t-k$.

Old-school solution strategy

We can mitigate this problem if state information is encapsulated within a variable c_{t} called a cell

$$
x_{t}:=a_{\theta^{\prime}}\left(x_{t-1}\right) f_{\theta^{\prime}}\left(c_{t}\right)
$$

that has its own parameters θ that affect the next cell state additively:

$$
c_{t}:=g_{\theta^{\prime}}\left(x_{t-1}\right) c_{t-1}+h_{\theta}\left(x_{t-1}\right) .
$$

Then the gradient wrt the cell parameter develops through time as

$$
\begin{aligned}
\frac{d c_{1}}{d \theta} & =\frac{d h_{\theta}\left(x_{0}\right)}{d \theta} \\
\frac{d c_{2}}{d \theta} & =g_{\theta^{\prime}}\left(x_{1}\right) \frac{d c_{1}}{d \theta}+\frac{d h_{\theta}\left(x_{1}\right)}{d \theta}=g_{\theta^{\prime}}\left(x_{1}\right) \frac{d h_{\theta}\left(x_{0}\right)}{d \theta}+\frac{d h_{\theta}\left(x_{1}\right)}{d t} \\
\frac{d c_{3}}{d \theta} & =g_{\theta^{\prime}}\left(x_{2}\right) \frac{d c_{2}}{d \theta}+\frac{d h_{\theta}\left(x_{2}\right)}{d \theta} \\
& =g_{\theta^{\prime}}\left(x_{2}\right)\left(g_{\theta^{\prime}}\left(x_{1}\right) \frac{d h_{\theta}\left(x_{0}\right)}{d \theta}+\frac{d h_{\theta}\left(x_{1}\right)}{d \theta}\right)+\frac{d h_{\theta}\left(x_{2}\right)}{d \theta}
\end{aligned}
$$

Old-school solution strategy

$$
\begin{aligned}
\frac{d c_{3}}{d \theta} & =g_{\theta^{\prime}}\left(x_{2}\right) g_{\theta^{\prime}}\left(x_{1}\right) \frac{d h_{\theta}\left(x_{0}\right)}{d \theta}+g_{\theta^{\prime}}\left(x_{2}\right) \frac{d h_{\theta}\left(x_{1}\right)}{d \theta}+\frac{d h_{\theta}\left(x_{2}\right)}{d \theta} \\
\frac{d c_{4}}{d \theta} & =g_{\theta^{\prime}}\left(x_{3}\right) \frac{d c_{3}}{d \theta}+\frac{d h_{\theta}\left(x_{3}\right)}{d \theta} \\
\frac{d c_{4}}{d \theta} & =g_{\theta^{\prime}}\left(x_{3}\right)\left(g_{\theta^{\prime}}\left(x_{2}\right) g_{\theta^{\prime}}\left(x_{1}\right) \frac{d h_{\theta}\left(x_{0}\right)}{d \theta}+g_{\theta^{\prime}}\left(x_{2}\right) \frac{d h_{\theta}\left(x_{1}\right)}{d \theta}+\frac{d h_{\theta}\left(x_{2}\right)}{d \theta}\right) \\
& +\frac{d h_{\theta}\left(x_{3}\right)}{d \theta} \\
& =g_{\theta^{\prime}}\left(x_{3}\right) g_{\theta^{\prime}}\left(x_{2}\right) g_{\theta^{\prime}}\left(x_{1}\right) \frac{d h_{\theta}\left(x_{0}\right)}{d \theta}+g_{\theta^{\prime}}\left(x_{3}\right) g_{\theta^{\prime}}\left(x_{2}\right) \frac{d h_{\theta}\left(x_{1}\right)}{d t} \\
& +g_{\theta^{\prime}}\left(x_{3}\right) \frac{d h_{\theta}\left(x_{2}\right)}{d \theta}+\frac{d h_{\theta}\left(x_{3}\right)}{d \theta}
\end{aligned}
$$

The gradient highway

Generalized to t steps

$$
\frac{d c_{t}}{d \theta}=\sum_{k=0}^{t-1}\left(\prod_{j=k+1}^{t-1} g_{\theta^{\prime}}\left(x_{j}\right)\right) \frac{d h_{\theta}\left(x_{k}\right)}{d \theta}
$$

Hence the full gradient is

$$
\frac{d x_{t}}{d \theta}=h_{\theta^{\prime}}\left(x_{t-1}\right) \frac{d f_{\theta^{\prime}}\left(c_{t}\right)}{d c_{t}}\left(\prod_{j=k+1}^{t-1} g_{\theta^{\prime}}\left(x_{j}\right)\right) \frac{d h_{\theta}\left(x_{k}\right)}{d \theta}
$$

The gradient no longer has a product of terms that depend on the updated parameter θ. The gradient may still vanish if $\left\|g_{\theta^{\prime}}\left(x_{j}\right)\right\|$ is small for multiple time steps, however

- The risk is significantly lower as it is now a joint event, while in RNNs one occurrence of $\|W\|$ destroys the whole gradient signal.
- The gradient can no longer vanish due to $\frac{d h_{\theta}\left(x_{k}\right)}{d \theta}$.

Long Short-Term Memory (LSTM)

$$
\begin{aligned}
c_{t} & :=f_{t} c_{t-1}+i_{t} \tanh \left(W_{c}\left[x_{t-1}, u_{t}\right]\right) \\
x_{t} & :=o_{t} \tanh \left(c_{t}\right) \\
f_{t} & =\sigma\left(W_{f}\left[x_{t-1}, u_{t}\right]\right), \\
i_{t} & =\sigma\left(W_{i}\left[x_{t-1}, u_{t}\right]\right), \\
o_{t} & =\sigma\left(W_{o}\left[x_{t-1}, u_{t}\right]\right),
\end{aligned}
$$

cell update
state update forget gate input gate output gate

Transformers ${ }^{1}$

Dynamics modeling without feedback loops

Problem: RNNs (also LSTMs)

 compute hidden states sequentially:- unparallelizable
- causes the bottleneck problem
- suffers from vanishing gradients
Solution: Use self-attention and point-wise nonlinearity successively to transform a sequence into another sequence.

${ }^{1}$ Figure: https://arxiv.org/pdf/1706.03762.pdf

Elements of the Transformer architecture

The goal is to map $\left\{x_{1}, \ldots, x_{N}\right\}$ to $\left\{y_{1}, \ldots, y_{N^{\prime}}\right\}$ for $x_{t} \in \mathbb{R}^{d_{i n}}$

- Encoder: $h_{t}=f_{\theta}\left(x_{t}\right)$ for neural net f_{θ} and $h_{t} \in \mathbb{R}^{d_{e m b}}$
- Scaled Dot-Product Attention: For key dimensionality d_{k} and value dimensionality d_{v} we have

$$
\operatorname{attend}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V \in \mathbb{R}^{N^{\prime} \times d_{v}}
$$

where $Q \in \mathbb{R}^{N^{\prime} \times d_{k}}, K \in \mathbb{R}^{N \times d_{k}}$ and $V \in \mathbb{R}^{N \times d_{v}}$ with entries

$$
v_{t}=g_{\psi}\left(h_{t}\right), \quad k_{t}=u_{\eta}\left(h_{t}\right), \quad q_{t}=u_{\eta}\left(h_{t}\right)
$$

- Self-Attention: Use the same sequence for K and Q, i.e.

$$
\operatorname{self}-\operatorname{attend}(Q, K, V)=\operatorname{softmax}\left(\frac{K K^{T}}{\sqrt{d_{k}}}\right) V \in \mathbb{R}^{N \times d_{v}}
$$

which outputs a sequence of equal length to the input. When $K \neq Q$ then it is called cross-attention.

Road blocker 1

Lack of sequence information

Do positional encoding. The encoder f_{θ} processes each element x_{t} of the sequence independently, which causes the position information t get lost. Do

$$
\begin{aligned}
P E(t, 2 i) & =\sin \left(t / 10000^{2 i / d_{e m b}}\right) \\
P E(t, 2 i+1) & =\cos \left(t / 10000^{2 i / d_{e m b}}\right)
\end{aligned}
$$

where $i \in\left\{1, \ldots, d_{e m b}\right\}$ and use

$$
h_{t}:=f_{\theta}\left(x_{t}\right)+\left[P E(1), \ldots, P E\left(d_{e m b}\right)\right]
$$

as the embedding function.

Road blocker 2

Softmax attends to a single element

Do multi-head attention.

$$
\operatorname{multi-head}(Q, K, V)=\operatorname{concat}\left(A_{1}, \ldots, A_{R}\right) W^{O} \in \mathbb{R}^{N^{\prime} \times d_{v}}
$$

where $A_{i}=$ attend $\left(Q W_{i}^{Q}, K W_{i}^{K}, V W_{i}^{V}\right)$ is called an attention head which has projection matrices

$$
W_{i}^{Q} \in \mathbb{R}^{d_{e m b} \times d_{k}}, \quad W_{i}^{K} \in \mathbb{R}^{d_{e m b} \times d_{k}}, \quad W^{O} \in \mathbb{R}^{h d_{v} \times d_{e m b}}
$$

- Akin to using multiple filters in convolutional neural nets.
- Allows querying compound information (e.g. both subject and verb of a sentence to decide the modal verb in correct tense.)
- The classic transformer uses $R=8$ and $d_{v}=64$.

Road blocker 3

Transformed sequence is linear in the input sequence

Add position-wise nonlinearity.

$$
F F N\left(h_{t}^{\prime}\right)=\text { layernorm }\left(\max \left(0, W_{1}^{T} h_{t}^{\prime}\right) W_{2}+h_{t}^{\prime}\right)
$$

where

$$
h_{t}^{\prime}=\operatorname{layernorm}\left(\operatorname{multi}-\operatorname{head}\left(q_{t}, K, v_{t}\right)+h_{t}\right) .
$$

Attention is a memory fetch and this nonlinearity is an information processing step identical for each piece of information in the memory.

For layernorm, see https://arxiv.org/abs/1607.06450.

Road blocker 4

Cross-attention while decoding

Use masked decoding. Prevent attention lookups into the future (causal), because otherwise a circular dependency is introduced:

$$
e_{l, t}= \begin{cases}q_{l} \cdot k_{t}, & \text { if } t \leq l, \\ -\infty, & \text { otherwise }\end{cases}
$$

Pros and cons of transformers

- (+) Memorizes longer-range distances than RNNs thanks to the one-step computation distance between any pair of variables in the sequence.
- (+) Parallelizable, i.e. allow building much deeper cascades than RNNs without having numerical issues.
- (-) Transformers have complexity $O\left(N^{2}\right)$ but in practice it is more like $O(N)$. They are more difficult to implement than RNNs for most programmers.
Useful to see code here:
https:
//pytorch.org/tutorials/beginner/transformer_tutorial.html.

