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Recurrent Neural Nets (RNNs)

The simplest choice is a recurrent neural net

Tip1 = folxg, t).

Common choice is x;+1 := W tanh(z;). Note how dependencies grow

x1 := W tanh(zg, 0)
x9 1= W tanh(W tanh(xo,0))
x3 := W tanh(W tanh(W tanh(zg)))

xy = W tanh(W tanh(- - - W tanh(zg), - - -)
Possible to enhance the nonlinearity of per-time-step update

Zy41 = Wi tanh(Ws tanh(xy)).
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Latent state spaces and Seq2Seq design

Also possible to model dynamics in a latent state space:

X441 := Wy tanh(xy) + W; tanh(uy),
Yt+1 = WO tanh(:nt+1).

It is even possible to input a sequence x4, ..., x5 and output another
not necessarily time-aligned sequence yc, . .., yp:

xi41 := Wy tanh(zy) + W; tanh(uy), t=A,...,B
Yi+1 := Wy tanh(zy1), t=0C,...,D.

This is called the seq2seq design. A common choice in machine
translation applications is C' = B + 1, i.e. read the whole sentence first
and translate afterwards.

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 3/20



The bottleneck problem

In a seg2seq model, the only information the decoder has about the
encoder is the last hidden state xp of the encoded sequence. This
causes big information loss especially for long sequences.
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Chain rule for feedback loop systems
Given input z( and its intermediate representations x; = fy, (x;—1) For
feedforward for i = 1,2, ..., L we have

dry dxp_1 dx; dx

d
%fGL (feLfl(' o fgl (iUl_l) T )) - dﬁLfl de72 : dxl—l del
Things are tricker when the same function is repeated x; = fy(x;—1)
sharing the same parameter across nested operations. Above the
chain rule applies backwards L — [. Now it needs to be forward in
time and x; depends both directly on 6 and via x;_+:

dry  Oxy  Oxgdxy

a0 90 0w, do

Go one step further

dvs _ Ows | Ovgdry  Ovy | Oxg(drs | Oy dry
Ao 00  Oxe df 00 = Oxo ’

W+de0
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Chain rule for feedback loop systems
Another step

dry _ Oy | OwyOry | 0wy Oy day
. % 4+ 2 61‘4 8:1:3 4 2 a$4 8{[:3 (8332 4 92 8:132 dl‘l)
00 al’g 89 81’3 8{[}2 00 6951 df

Oxy Oxa0x3 Ox4 Ox3 019  Ox4 O3 OT9 dX1

=00 T 0ns 00 T 91300y 00 | s Oy 02y dO

Generalize to an arbitrary tth step

d 0 0
IL"t o Z} < H ax::k1> or;
J

k=j+1
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Back-Propagation Through Time (BPTT)
Denote ground truth as &;, model as z; = fy(z:—1) and solve
N1
. Lo 2
arg nbm; 2(:1:,5 x¢)

by gradient-descent, hence

] 2me |2
it 856k_1 89
Unrolling the RNN to collect gradient signal from consecutive time

steps to update a single parameter set is called Back-Propagation
Through Time (BPTT).

For details see https://arxiv.org/pdf/1211.5063.pdf
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The norm (magnitude) of the gradient
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The vanishing gradients problem

For the classical RNN design =, = Wo(x,_1) with some activation
function o(-) we have

Itis likely ||W|| < 1/||00(xk—1)/0xk—1|| to happen, which would cause

o0xp 0o (xg—_1)

0Tk—1 0Tk—1 COxpo1

_ "Waa(xk 1

ox b ox
k k
Org—1 - I:It Orp_q - tlggon =0
J= —_——
n;€[0,1)

where 7, = max; ;. The contribution of the terms dependent on past
experience to the gradient vanishes exponentially with the time
difference t — k.
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Old-school solution strategy

We can mitigate this problem if state information is encapsulated within
a variable ¢, called a cell

xy = ag(xi—1) for (ct)
that has its own parameters 6 that affect the next cell state additively:
¢t = gor(Te—1)ct—1 + hg(1-1).

Then the gradient wrt the cell parameter develops through time as
dCl _ dh@(.To)

a9~ do

dCQ . d01 dh@(xl) . dhg(l‘o) dh@(l’l)
g @) gy g =)=
des dea  dhg(z2)

ap 9 @)yt

= g@/(xQ) <gel(wl)dh9(x0) + dhg((l?ﬁ) i dhil(éTQ)

do do
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Old-school solution strategy

dC3 . dhg(l‘o) dhg({L‘l) dhe(:Eg)
d@ —991(1'2)99/(./1:1) de ggl($2) d@ + d9
dcy _ dcs dh@(l‘g)
@ et
dC4 . dhg(.’l:o) dhe(aj‘l) dhe(l‘g)
7 = go(23) <99/(552)99'(931) 10 + 9o/ (x2) 0 T
dh9($3)
LT
dhy(x dhg(x
= g0 es)a (e2)aw (o) P2 ) g ) D)

dt
dh,g (xg) T dh,9 (563)

+ gor (x3) a0 a0

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets




The gradient highway

Generalized to ¢ steps
dey t—1
e

Hence the full gradient is

t—1

dhg(xy)
ll_!rl g (: > df

J

t—1

dzy _ dfy (ct) \ dhg(x)
g = er(@-1) i, (jl}rlgm(MD g7

The gradient no longer has a product of terms that depend on the
updated parameter 6. The gradient may still vanish if ||g (x;)|| is small
for multiple time steps, however

@ The risk is significantly lower as it is now a joint event, while in

RNNs one occurrence of ||IW|| destroys the whole gradient signal.
dhe(wk)

@ The gradient can no longer vanish due to
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Long Short-Term Memory (LSTM)

output

cell

next state

state i
Oav:

input

¢t = fre—1 + i tanh(We[we—1, ug])
x4 := o tanh(cy)
fr = o(Wlxi—1,u4)),
iy = o(Wilai—1,ue]),
op = o(Wo|xp—1,u4]),
for o(2) = 1/(1 + exp(—=2)).

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets

cell update
state update
forget gate
input gate
output gate



Transformers'

Dynamics modeling without feedback loops

Problem: RNNs (also LSTMs)
compute hidden states
sequentially:

@ unparallelizable

@ causes the bottleneck
problem

@ suffers from vanishing
gradients

Solution: Use self-attention
and point-wise nonlinearity
successively to transform a
sequence into another
sequence.
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'Figure: https://arxiv.org/pdf/1706.03762.pdf
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Elements of the Transformer architecture
The goal isto map {z1,...,zx} t0 {y1,...,yn/} for z; € Rn
@ Encoder: hy = fy(x,) for neural net fy and h; € Rdemb
@ Scaled Dot-Product Attention: For key dimensionality d; and
value dimensionality d,, we have

T

K
attend(Q, K, V) = softmax(cf/CT
k

where Q € RN %dx | | ¢ RV>dk and V € RV >4 with entries

)V e RN

v = gy (he), ke = wuy(he), qr = up(hy).

@ Self-Attention: Use the same sequence for K and @, i.e.

KKT
self-attend(Q, K, V) = softmax <7

V e RN*dv
Vi)

which outputs a sequence of equal length to the input. When
K # @ then it is called cross-attention.
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Road blocker 1

Lack of sequence information

Do positional encoding. The encoder fy processes each element x;
of the sequence independently, which causes the position information ¢
get lost. Do

PE(t,2i) = sin(t/10000%/deme)
PE(t,2i + 1) = cos(t/10000%"/demt)

where i € {1,...,demp} and use
he :== fo(ze) + [PE(1), ..., PE(demp)]

as the embedding function.
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Road blocker 2

Softmax attends to a single element

Do multi-head attention.
multi-head(Q, K,V) = concat(Ay,... 7AR)WO € RV xdv

where A; = attend(QWiQ, KWX VW) is called an attention head
which has projection matrices

WiQ c Rdembxdk7 WiK € Rbemb ><dk’ WO ¢ Rhdvxdems

@ Akin to using multiple filters in convolutional neural nets.

@ Allows querying compound information (e.g. both subject and verb
of a sentence to decide the modal verb in correct tense.)

@ The classic transformer uses R = 8 and d,, = 64.
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Road blocker 3

Transformed sequence is linear in the input sequence

Add position-wise nonlinearity.
FFN(R) = layernorm( max(0, W R Wa + hQ)
where
hy = layernorm<mu1ti—head(qt, K,v) + ht>.

Attention is a memory fetch and this nonlinearity is an information
processing step identical for each piece of information in the memory.

For layernorm, see https://arxiv.org/abs/1607.06450.

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 18/20


https://arxiv.org/abs/1607.06450

Road blocker 4

Cross-attention while decoding

Use masked decoding. Prevent attention lookups into the future
(causal), because otherwise a circular dependency is introduced:

{ql-kt, if ¢ <1,
€Lt =

—00, otherwise
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Pros and cons of transformers

@ (+) Memorizes longer-range distances than RNNs thanks to the
one-step computation distance between any pair of variables in
the sequence.

@ (+) Parallelizable, i.e. allow building much deeper cascades than
RNNSs without having numerical issues.

@ (-) Transformers have complexity O(NN?) but in practice it is more
like O(N). They are more difficult to implement than RNNs for
most programmers.

Useful to see code here:
https:
//pytorch.org/tutorials/beginner/transformer_tutorial.html.
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