
9- Dynamics Modeling with Neural Nets
Melih Kandemir

University of Southern Denmark
Department of Mathematics and Computer Science (IMADA)

kandemir@imada.sdu.dk

Fall 2022

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 1 / 20

Recurrent Neural Nets (RNNs)
The simplest choice is a recurrent neural net

xt+1 := fθ(xt, t).

Common choice is xt+1 := W tanh(xt). Note how dependencies grow

x1 := W tanh(x0, 0)

x2 := W tanh(W tanh(x0, 0))

x3 := W tanh(W tanh(W tanh(x0)))

...
xN := W tanh(W tanh(· · ·W tanh(x0), · · ·)

Possible to enhance the nonlinearity of per-time-step update

xt+1 := W1 tanh(W2 tanh(xt)).

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 2 / 20

Latent state spaces and Seq2Seq design

Also possible to model dynamics in a latent state space:

xt+1 := Ws tanh(xt) +Wi tanh(ut),

yt+1 := Wo tanh(xt+1).

It is even possible to input a sequence xA, . . . , xB and output another
not necessarily time-aligned sequence yC , . . . , yD:

xt+1 := Ws tanh(xt) +Wi tanh(ut), t = A, . . . , B

yt+1 := Wo tanh(xt+1), t = C, . . . ,D.

This is called the seq2seq design. A common choice in machine
translation applications is C = B + 1, i.e. read the whole sentence first
and translate afterwards.

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 3 / 20

The bottleneck problem
In a seq2seq model, the only information the decoder has about the
encoder is the last hidden state xB of the encoded sequence. This
causes big information loss especially for long sequences.

the blue house <eos>

la casa azul <eos>

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 4 / 20

Chain rule for feedback loop systems
Given input x0 and its intermediate representations xl = fθl(xl−1) For
feedforward for l = 1, 2, . . . , L we have

d

dθl
fθL(fθL−1

(· · · fθl(xl−1) · · ·)) =
dxL
dxL−1

dxL−1

dxL−2
· · · dxl

dxl−1

dxl
dθl

Things are tricker when the same function is repeated xl = fθ(xl−1)
sharing the same parameter across nested operations. Above the
chain rule applies backwards L → l. Now it needs to be forward in
time and xl depends both directly on θ and via xl−1:

dx2
dθ

=
∂x2
∂θ

+
∂x2
∂x1

dx1
dθ

Go one step further

dx3
dθ

=
∂x3
∂θ

+
∂x3
∂x2

dx2
dθ

=
∂x3
∂θ

+
∂x3
∂x2

(
∂x2
∂θ

+
∂x2
∂x1

dx1
dθ

)
.

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 5 / 20

Chain rule for feedback loop systems

Another step

dx4
dθ

=
∂x4
∂θ

+
∂x4
∂x3

∂x3
∂θ

+
∂x4
∂x3

∂x3
∂x2

dx2
dθ

=
∂x4
∂θ

+
∂x4
∂x3

∂x3
∂θ

+
∂x4
∂x3

∂x3
∂x2

(
∂x2
∂θ

+
∂x2
∂x1

dx1
dθ

)

=
∂x4
∂θ

+
∂x4
∂x3

∂x3
∂θ

+
∂x4
∂x3

∂x3
∂x2

∂x2
∂θ

+
∂x4
∂x3

∂x3
∂x2

∂x2
∂x1

dx1
dθ

.

Generalize to an arbitrary tth step

dxt
dθ

=

t∑
j=1

(
t∏

k=j+1

∂xk
∂xk−1

)
∂xj
∂θ

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 6 / 20

Back-Propagation Through Time (BPTT)
Denote ground truth as x̂t, model as xt = fθ(xt−1) and solve

argmin
θ

N∑
t=1

1

2
(x̂t − xt)

2

by gradient-descent, hence

θ :=θ − γ

N∑
t=1

(x̂t − xt)
dxt
dθ

=θ − γ
N∑
t=1

(x̂t − xt)
t∑

j=1

(
t∏

k=j+1

∂xk
∂xk−1

)
∂xj
∂θ

Unrolling the RNN to collect gradient signal from consecutive time
steps to update a single parameter set is called Back-Propagation
Through Time (BPTT).

For details see https://arxiv.org/pdf/1211.5063.pdf
M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 7 / 20

https://arxiv.org/pdf/1211.5063.pdf

The norm (magnitude) of the gradient
∣∣∣∣∣
∣∣∣∣∣
N∑
t=1

(x̂t − xt)

t∑
j=1

(
t∏

k=j+1

∂xk
∂xk−1

)
∂xj
∂θ

∣∣∣∣∣
∣∣∣∣∣

=

N∑
t=1

∣∣∣∣∣
∣∣∣∣∣(x̂t − xt)

t∑
j=1

(
t∏

k=j+1

∂xk
∂xk−1

)
∂xj
∂θ

∣∣∣∣∣
∣∣∣∣∣

≤
N∑
t=1

∣∣∣∣∣
∣∣∣∣∣(x̂t − xt)

∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣

t∑
j=1

(
t∏

k=j+1

∂xk
∂xk−1

)
∂xj
∂θ

∣∣∣∣∣
∣∣∣∣∣

=

N∑
t=1

∣∣∣∣∣
∣∣∣∣∣(x̂t − xt)

∣∣∣∣∣
∣∣∣∣∣ ·

t∑
j=1

∣∣∣∣∣
∣∣∣∣∣
(

t∏
k=j+1

∂xk
∂xk−1

)
∂xj
∂θ

∣∣∣∣∣
∣∣∣∣∣

≤
N∑
t=1

∣∣∣∣∣
∣∣∣∣∣(x̂t − xt)

∣∣∣∣∣
∣∣∣∣∣ ·

t∑
j=1

t∏
k=j+1

∣∣∣∣∣
∣∣∣∣∣ ∂xk
∂xk−1

∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣∂xj∂θ

∣∣∣∣∣
∣∣∣∣∣

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 8 / 20

The vanishing gradients problem

For the classical RNN design xk = Wσ(xk−1) with some activation
function σ(·) we have∣∣∣∣∣

∣∣∣∣∣ ∂xk
∂xk−1

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣W ∂σ(xk−1)

∂xk−1

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣W
∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣∂σ(xk−1)

∂xk−1

∣∣∣∣∣
∣∣∣∣∣.

It is likely ||W || < 1/||∂σ(xk−1)/∂xk−1|| to happen, which would cause∣∣∣∣∣
∣∣∣∣∣ ∂xk
∂xk−1

∣∣∣∣∣
∣∣∣∣∣ < 1 ⇒

k∏
j=t

∣∣∣∣∣
∣∣∣∣∣ ∂xk
∂xk−1

∣∣∣∣∣
∣∣∣∣∣︸ ︷︷ ︸

ηj∈[0,1)

⇒ lim
t→∞

ηt−k∗ = 0

where η∗ = maxj ηj . The contribution of the terms dependent on past
experience to the gradient vanishes exponentially with the time
difference t− k.

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 9 / 20

Old-school solution strategy
We can mitigate this problem if state information is encapsulated within
a variable ct called a cell

xt := aθ′(xt−1)fθ′(ct)

that has its own parameters θ that affect the next cell state additively:

ct := gθ′(xt−1)ct−1 + hθ(xt−1).

Then the gradient wrt the cell parameter develops through time as

dc1
dθ

=
dhθ(x0)

dθ
dc2
dθ

= gθ′(x1)
dc1
dθ

+
dhθ(x1)

dθ
= gθ′(x1)

dhθ(x0)

dθ
+

dhθ(x1)

dt
dc3
dθ

= gθ′(x2)
dc2
dθ

+
dhθ(x2)

dθ

= gθ′(x2)

(
gθ′(x1)

dhθ(x0)

dθ
+

dhθ(x1)

dθ

)
+

dhθ(x2)

dθ

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 10 / 20

Old-school solution strategy

dc3
dθ

= gθ′(x2)gθ′(x1)
dhθ(x0)

dθ
+ gθ′(x2)

dhθ(x1)

dθ
+

dhθ(x2)

dθ
dc4
dθ

= gθ′(x3)
dc3
dθ

+
dhθ(x3)

dθ

dc4
dθ

= gθ′(x3)

(
gθ′(x2)gθ′(x1)

dhθ(x0)

dθ
+ gθ′(x2)

dhθ(x1)

dθ
+

dhθ(x2)

dθ

)

+
dhθ(x3)

dθ

= gθ′(x3)gθ′(x2)gθ′(x1)
dhθ(x0)

dθ
+ gθ′(x3)gθ′(x2)

dhθ(x1)

dt

+ gθ′(x3)
dhθ(x2)

dθ
+

dhθ(x3)

dθ

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 11 / 20

The gradient highway
Generalized to t steps

dct
dθ

=

t−1∑
k=0

(t−1∏
j=k+1

gθ′(xj)
)dhθ(xk)

dθ

Hence the full gradient is

dxt
dθ

= hθ′(xt−1)
dfθ′(ct)

dct

(t−1∏
j=k+1

gθ′(xj)
)dhθ(xk)

dθ

The gradient no longer has a product of terms that depend on the
updated parameter θ. The gradient may still vanish if ||gθ′(xj)|| is small
for multiple time steps, however

The risk is significantly lower as it is now a joint event, while in
RNNs one occurrence of ||W || destroys the whole gradient signal.

The gradient can no longer vanish due to dhθ(xk)
dθ .

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 12 / 20

Long Short-Term Memory (LSTM)

σ σ Tanh σ

× +

× ×

Tanh

ct−1

cell

xt−1

state

utinput

ct

xt

next state

xt

output

ct := ftct−1 + it tanh(Wc[xt−1, ut]) cell update
xt := ot tanh(ct) state update
ft = σ(Wf [xt−1, ut]), forget gate
it = σ(Wi[xt−1, ut]), input gate
ot = σ(Wo[xt−1, ut]), output gate

for σ(z) = 1/(1 + exp(−z)).
M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 13 / 20

Transformers1

Dynamics modeling without feedback loops

Problem: RNNs (also LSTMs)
compute hidden states
sequentially:

unparallelizable
causes the bottleneck
problem
suffers from vanishing
gradients

Solution: Use self-attention
and point-wise nonlinearity
successively to transform a
sequence into another
sequence.

1Figure: https://arxiv.org/pdf/1706.03762.pdf
M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 14 / 20

https://arxiv.org/pdf/1706.03762.pdf

Elements of the Transformer architecture
The goal is to map {x1, . . . , xN} to {y1, . . . , yN ′} for xt ∈ Rdin

Encoder: ht = fθ(xt) for neural net fθ and ht ∈ Rdemb

Scaled Dot-Product Attention: For key dimensionality dk and
value dimensionality dv we have

attend(Q,K, V) = softmax
(QKT

√
dk

)
V ∈ RN

′×dv

where Q ∈ RN ′×dk , K ∈ RN×dk and V ∈ RN×dv with entries

vt = gψ(ht), kt = uη(ht), qt = uη(ht).

Self-Attention: Use the same sequence for K and Q, i.e.

self-attend(Q,K, V) = softmax
(KKT

√
dk

)
V ∈ RN×dv

which outputs a sequence of equal length to the input. When
K ̸= Q then it is called cross-attention.
M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 15 / 20

Road blocker 1
Lack of sequence information

Do positional encoding. The encoder fθ processes each element xt
of the sequence independently, which causes the position information t
get lost. Do

PE(t, 2i) = sin(t/100002i/demb)

PE(t, 2i+ 1) = cos(t/100002i/demb)

where i ∈ {1, . . . , demb} and use

ht := fθ(xt) + [PE(1), . . . , PE(demb)]

as the embedding function.

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 16 / 20

Road blocker 2
Softmax attends to a single element

Do multi-head attention.

multi-head(Q,K, V) = concat(A1, . . . , AR)W
O ∈ RN

′×dv

where Ai = attend(QWQ
i ,KWK

i , V W V
i) is called an attention head

which has projection matrices

WQ
i ∈ Rdemb×dk , WK

i ∈ Rdemb×dk , WO ∈ Rhdv×demb

Akin to using multiple filters in convolutional neural nets.
Allows querying compound information (e.g. both subject and verb
of a sentence to decide the modal verb in correct tense.)
The classic transformer uses R = 8 and dv = 64.

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 17 / 20

Road blocker 3
Transformed sequence is linear in the input sequence

Add position-wise nonlinearity.

FFN(h′t) = layernorm
(
max(0,W T

1 h′t)W2 + h′t

)
where

h′t = layernorm
(
multi-head(qt,K, vt) + ht

)
.

Attention is a memory fetch and this nonlinearity is an information
processing step identical for each piece of information in the memory.

For layernorm, see https://arxiv.org/abs/1607.06450.

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 18 / 20

https://arxiv.org/abs/1607.06450

Road blocker 4
Cross-attention while decoding

Use masked decoding. Prevent attention lookups into the future
(causal), because otherwise a circular dependency is introduced:

el,t =

{
ql · kt, if t ≤ l,

−∞, otherwise

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 19 / 20

Pros and cons of transformers

(+) Memorizes longer-range distances than RNNs thanks to the
one-step computation distance between any pair of variables in
the sequence.
(+) Parallelizable, i.e. allow building much deeper cascades than
RNNs without having numerical issues.
(-) Transformers have complexity O(N2) but in practice it is more
like O(N). They are more difficult to implement than RNNs for
most programmers.

Useful to see code here:
https:
//pytorch.org/tutorials/beginner/transformer_tutorial.html.

M. Kandemir (SDU) 9- Dynamics Modeling with Neural Nets Fall 2022 20 / 20

https://pytorch.org/tutorials/beginner/transformer_tutorial.html
https://pytorch.org/tutorials/beginner/transformer_tutorial.html

